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Abstract. The present paper is concerned with some self-interacting diffusions (Xt, t ≥ 0)
living on Rd. These diffusions are solutions to stochastic differential equations:

dXt = dBt − g(t)∇V (Xt − µt)dt

where µt is the empirical mean of the process X, V is an asymptotically strictly convex
potential and g is a given positive function. We study the asymptotic behaviour of X for
three different families of functions g. If g(t) = k log t with k small enough, then the process
X converges in distribution towards the global minima of V , whereas if tg(t) → c ∈]0,+∞]
or if g(t)→ g(∞) ∈ [0,+∞[, then X converges in distribution iif

∫
xe−2V (x) dx = 0.

1. Introduction

The aim of this paper is to obtain necessary and sufficient conditions for the convergence
in distribution of a self-interacting diffusion living on Rd. Consider a smooth potential V :
Rd → R+ and a map g : R+ → R+. We study the asymptotic behaviour of the self-interacting
diffusion X given by

(1.1) dXt = dBt − g(t)∇V (Xt − µt)dt, X0 = x = µ̄0

where B is a standard Brownian motion and µt denotes the empirical mean of the process X:

µt =
1

t

∫ t

0

Xsds.(1.2)

This is a model of reinforcement that could be used to represent the (simplified) behaviour of
some social insects. Some insects, as ants, mark their paths with pheromones. This serves as
a guide for other ants to return to the nest. The trail of pheromones is denoted by X and its
evaporation by g. Despite this evaporation, the path is reinforced and the insects gradually
manage to find the best route.

The same model has been already studied by Chambeu & Kurtzmann [4], in case of an
unbounded increasing function g. The authors have proven that, under certain conditions, the
process satisfies a kind of pointwise ergodic theorem, and that if V admits a unique minimum
at 0, then Xt converges almost surely. In this paper, we do not suppose that g increases
to the infinity nor that V admits a unique minimum at 0. This will obviously change the
asymptotic behaviour of X, even if X will converge in distribution in most of the cases. We
will essentially use two different techniques here. The first one is the well-known theory of
simulated annealing, which has been developed a lot since the 80’s with a huge literature,
whereas the second one is simply a change of scale added to a change of “speed measure”.

Let us explain briefly the simulated annealing method. An important question for physical
systems is to find the globally minimum energy states of the system. Experimentally, the
ground states are reached by chemical annealing. One first melts a substance and then cools
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it slowly, being careful to pass slowly through the freezing temperature. If the temperature
decreases too rapidly, then the system does not end up in a ground state, but in a local non-
global minimum. On the other hand, if the temperature decreases too slowly, then the system
approaches the ground states very slowly. The competition between these two effects deter-
mines the optimal speed of cooling, that is the annealing schedule. The study of simulated
annealing has involved the theory of non-homogeneous Markov chains and diffusion processes,
large deviation theory, spectral analysis of operators and singular perturbation theory. Pio-
neering work was done by Freidlin and Wentzell [6]. The initial problem consists in finding
the global minima of a given function U . Actually, one has to study the diffusion Markov pro-
cess Xε in Rd given by the Langevin-type Markov diffusion dXε

t = dBεt −∇U(Xε)dt. If the
temperature ε is constant for a sufficiently large amount of time, then the process Xε and the
fixed temperature process behave approximatively the same at the end of that time interval.
The optimal annealing schedule, that is ε for the convergence criterion P(Xε

t ∈ Min) −→
t→∞

1,

where Min denotes the set of all the global minima of U , was first determined by Hajek [8] for
a finite state space. Chiang, Hwang and Sheu [5] studied the convergence rate of Px(Xε

t ∈ ·)
via the large deviations of the transition density of Xε. They were one of the first to show the
convergence of the algorithm of the simulated annealing for ε2

t = k/ log t, for k large enough,
related to the second eigenvalue of the corresponding (to Xε) infinitesimal generator. Finally,
Holley and Stroock [11] initiated a new method and proved, in the discrete case, the conver-
gence of the simulated annealing algorithm via the Sobolev inequality. They went further in
their study with Kusuoka [9]. Later, Miclo [15] proved, through some functional inequalities,
that the free energy (that is the relative entropy of the distribution of the process at time
t with respect to the invariant probability measure for the elliptic operator considered as a
time-homogeneous operator by fixing t) satisfies a differential inequality, which implies (under
some decreasing evolution of the temperature to zero) the convergence of the process to the
global minima of the potential. And if the temperature ε decreases too fast to zero, then the
potential can freeze in a local minimum (depending on the initial condition) and so the process
converges to this local minimum.

We begin to study the Rd-valued Markov process Yt := Xt− µ̄t, which satisfies the following
SDE

(1.3)

{
dYt = dBt − g(t)∇V (Yt)dt− Yt dt

t
, Y0 = 0;

dµt = Yt
dt
t
, µ0 = x.

We will adapt the simulated annealing method to Y for functions g large enough (that is g
does not go to zero) to prove the convergence in distribution of Y .

We wish to point out that a one-dimensional Brownian motion in a time-dependent potential
has been recently studied by Gradinaru and Offret [7]:

dZt = dBt − ∂xVρ,α,β(t, Zt)dt, Zt0 = z0

with Vρ,α,β(t, x) = ρ
α+1

|x|α+1

tβ
1lα 6=−1 + ρ log |x|

tβ
1lα=−1 and z0, ρ, α, β ∈ R. This is quite close in

spirit to the study of our process Y , even if the authors suppose in [7] that both V and 1/g
are polynomial. They obtain conditions for the recurrence, transience and convergence of the
studied process Z. We refer to the survey of Ivanov et al [13] for the existence and uniqueness
of solutions to such equations. In the present paper, we do not suppose that g is polynomial
and the dimension is d ≥ 1, and thus we obtain less precise results.
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The remainder of the paper is organized as follows. First, in Section 2, we introduce some
useful tools, such as the logarithmic Sobolev inequality and the Kullback information. They
both will be needed for the simulated annealing study. Section 3 is devoted to the simulated
annealing method in the case when g behaves asymptotically as k log t. In this part, we will
prove the (pointwise) ergodicity of the process Y and the convergence in distribution of X,
depending on the potential V . Finally, Section 4 deals with the convergence in distribution of
X when tg(t)→ +∞ and g(t)→ c ≥ 0, depending on the asymptotics of V .

2. Some useful tools

2.1. Assumptions and existence. In the whole following, (·, ·) denotes the Euclidiean scalar
product. We denote by P(Rd) the set of probability measures on Rd. We denote by G the

function G(t) =
∫ t

0
g(s)ds. We assume that the mapping g : R+ → R+ is C1(R+). The precise

hypothesis on g will be given at the beginning of each section.

In the sequel, the technical assumptions on the potential V : Rd → R+ are the following:

(1) (regularity and positivity) V ∈ C2(Rd) and V ≥ 0;
(2) (convexity) V = W + χ where W is CW (> 0)-strictly uniformly convex and χ is a

compactly supported function and there exists Cχ > 0 such that ∇χ is Cχ-Lipschitz ;
(3) (growth) there exists a > 0 such that for all x ∈ Rd, we have

(2.1) ∆V (x) ≤ aV (x) and lim
|x|→+∞

|∇V (x)|2

V (x)
= +∞.

We also assume that V has a finite number of critical points. Let Max = {M1,M2, · · · ,Mp}
be the set of the saddle points and local maxima of V and Min = {m1,m2, · · · ,mn} be the
set of the local minima of V , such that the Hessian matrix is non-degenerate for all local
minimum. Without any loss of generality, we suppose that minV = 0.

Remark 2.1. The case V of quadratic growth is excluded here, as it has been fully studied
in [4].

Let us first prove the global strong existence and uniqueness of the process X.

Proposition 2.1. For any x ∈ Rd, µ ∈ P(Rd), there exists a unique global strong solution
(Xt, t ≥ 0) of (1.1).

Proof. The local existence and uniqueness of such a process is standard. We only need to
prove here that Y , hence X (because Xt := x+Yt+

∫ t
0
Ys

ds
s

), does not explode in a finite time.
To this aim, apply Itô’s formula to the function x 7→ V (x):

dV (Yt) = (∇V (Yt), dBt) +

(
1

2
∆V (Yt)− g(t)|∇V (Yt)|2 −

1

t
(∇V (Yt), Yt)

)
dt,

and introduce the sequence of stopping times τ0 = 0 and

τn = inf{t ≥ 0;V (Yt) > n}.

By the convexity condition, we have (∇V (y), y) −→
|y|→+∞

+∞, and by the condition (2.1), there

exists C > 0 such that EV (Yt∧τn) ≤ EV (Y0) + Ct. �

2.2. Preliminaries.
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2.2.1. Logarithmic Sobolev inequality.

Definition 2.2. The probability measure µ satisfies the logarithmic Sobolev inequality, with
the constant CLS, denoted by LSI(CLS), if for all function h ∈ L2(µ), we have∫

h2 log h2dµ−
(∫

h2dµ

)
log

(∫
h2dµ

)
≤ CLS

∫
|∇h|2dµ.

Let p(s, x, t, y) denote the density of the semi-group corresponding to the non-homogeneous
Markov process Z, defined by

dZt = εtdBt −
(
∇V (Zt) +

Zt
at

)
dt.

We will specify later the precise form of εt and at. We associate to this process the probability
measure Πt,εt(dx) = 1

πt
exp{−2ε−2

t (V (x)+|x|2/2at)}dx, where πt is the normalization constant
of Πt,εt .

Lemma 2.3. The family of probability measures (Πt,εt , t ≥ 0) satisfies a logarithmic Sobolev
inequality LSI(C(t)).

Proof. We use the celebrated Bakry-Emery Γ2-criterion, see [1]. We recall that, to the operator
Lt,εt , we associate the operator “carré du champ”, that is (for all function f, g ∈ C∞)

(2.2) ΓVt (f, g) :=
1

2
(Lt,εt(fg)− fLt,εtg − gLt,εtf) .

Then, we define the operator ΓV2 as

(2.3) ΓV2 (t)(f) :=
1

2

(
Lt,εtΓ

V
t (f, f)− 2ΓVt (f, Lt,εtf)

)
.

The Γ2-criterion asserts that if there exists a positive constant C such that ΓVt2 ≥ CΓVtt , then
Πt,εt satisfies a logarithmic Sobolev inequality, with the constant 2/C.

An easy calculation, for any function f of class C∞, leads to

ΓVt (f, f) = ε2
t |∇f |2

and

ΓV2 (t)(f) =
ε2
t

2
(∇f,∇2V∇f) +

ε4
t

4
||∇2f ||2 +

ε2
t

2a(t)
|∇f |2.

As V (and also Vt) is strictly convex off a compact set, we have the decomposition V = W+χ
as in the convexity hypothesis. We apply the Γ2-criterion of Bakry-Emery to the function W

and we get that ΓW2 (t)(f) ≥ CWΓWt (f). Thus, the probability measure e−2ε−2
t (W (x)+|x|2/a(t))/πt

satisfies the inequality LSI(2/CW ). We conclude, by the perturbation lemma due to Holley
and Stroock [10], that the measure Πt,εt satisfies a Sobolev logarithmic inequality with a

constant less than or equal to 2e
2

ε2t
oscχ

/CW , where osc(χ) = supχ− inf χ. �

2.2.2. Kullback information.

Definition 2.4. We define the free energy (up to an additive constant), known as the relative
Kullback information, of a probability measure ν with respect to a probability measure Π by:

H(ν|Π) :=

∫
dν log

dν

dΠ
.
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If we suppose that ν (respectively Π) has the density ν (respectively π) with respect to the
Lebesgue measure λ, then one has

(2.4) H(ν|Π) :=

∫
ν log

ν

π
dλ.

In this paper, we will first prove the decrease to zero of the relative free energy of the law
of Zt with respect to Πt,εt . The classical Csiszár-Kullback-Pinsker inequality relates the total
variation norm to the free energy in the following way (see for instance [11]):

(2.5) ‖µ− ν‖TV ≤
√

2H(µ|ν).

So, as the total variation norm metrizes the convergence in distribution, once we have proven
that the measure Πt,εt converges weakly to a measure Π and H(pt|Πt,εt) goes to zero, then the
distribution of Zt converges to Π. As Zt is the time-shifted process Yt, we obtain this way
that Y converges in distribution to Π.

Our strategy to show that H(pt|Ht,εt) goes to zero is the following. To shorten notation, let
pt := p(t0, x0, t, ·) be the distribution law of the process Zt conditioned on Zt0 = x0. We recall
that the family of probability measures (Πt,εt , t ≥ 0) satisfies a Sobolev logarithmic inequality

LSI(C(t)). We have also Πt,εt(dx) = πt,εt(x)λ(dx). So, we choose ht =
√

pt
πt,εt

satisfying∫
h2
tdΠt,εt = 1 and we will show in Corollary 3.6 the existence of C(t) > 0 such that

(2.6) H(pt|Πt,εt) =

∫
pt log

pt
πt,εt

dλ ≤ C(t)

∫
|∇ht|2dΠt,εt .

2.2.3. Asymptotic pseudotrajectories. In Section 4, we will use the notion of asymptotic pseu-
dotrajectory, introduced by Benäım and Hirsch [2]. It is particularly useful to analyze the
long-term behaviour of stochastic processes, considered as approximations of solutions of or-
dinary differential equation (the “ODE method”).

Definition 2.5. The process Y is an asymptotic pseudotrajectory for the flow φ if ∀T > 0

(2.7) lim
t→+∞

sup
0≤s≤T

|Yt+s − φs(Yt)| = 0 a.s.

It is shown in [2] that if Y is an asymptotic pseudotrajectory for φ, then the ω-limit set of
the flow generated by φ is the same as the ω-limit set of the process Y .

3. The simulated annealing method

Assume that the mapping g : R+ → R+ is asymptotically equivalent (up to a multiplicative
positive constant) to log t and satisfies g ∈ C1(R+) is such that g(0) > 0 and for all T > 0,
G−1(t+ T )−G−1(t) −→

t→∞
0 where G−1 is the generalized inverse of G.

Instead of considering Y , we consider the time-changed process Zt := YG−1(t). This last
process satisfies the following SDE

(3.1) dZt =
1√

g ◦G−1(t)
dBt −

(
∇V (Zt) +

Zt
G−1(t)g ◦G−1(t)

)
dt, Z0 = YG−1(0) = 0,

where B is a Brownian motion such that
∫ t

0
1√

g◦G−1(s)
dBs has the same law as BG−1(t).
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3.1. Convergence in distribution towards the global minima of V . We define ε2
t =

1
g◦G−1(t)

and a(t) = G−1(t)g ◦G−1(t). The process Z satisfies

(3.2) dZt = εtdBt −∇Vt(Zt)dt

where we have defined Vt(x) := V (x)+ |x|2
2a(t)

. Actually, we will prove that this non-homogeneous

Markov process converges in distribution to a measure that could correspond to its “invariant”
probability measure. Of course, if we suppose that a(t) ≡ a and εt ≡ ε, then the convergence
in distribution is obvious. It happens that the spectral gap λ appears naturally in our study.
Heuristically, when the time is of order eε

−2λ, the process is very close to the probability
measure

(3.3) Πt,ε(dx) :=
1

π(t, ε)
e−2ε−2Vt(x)dx.

It remains to show the convergence of Πt,ε when t goes to the infinity.

Let Lt,ε be the operator defined by Lt,ε := 1
2
ε2∆ − (∇Vt,∇). As |∇Vt|2 − ∆Vt goes to

the infinity as |x| → ∞, the theory of Schrödinger operator (see for instance [16, Thm13.6])
implies that Lt,ε is self-adjoint in L2(Πt,ε) and the spectrum of Lt,ε is discrete: 0 = λ1(t, ε) <
−λ2(t, ε) < . . .. The subspace corresponding to the first eigenvalue λ1(t, ε) is composed of the
constant functions and so

λ2(t, ε) = inf

{∫
|∇φ|2dΠt,ε; VarΠt,ε(φ) = 1, φ ∈ D(Rd)

}
.

Our first aim is to compute the eigenvalue λ2 and study its behaviour when t→∞.

Lemma 3.1. Let ε > 0 be fixed. The probability measure Πt,ε converges weakly, as t→∞, to

Π∞,ε(dx) := 1
π(ε)

e−2ε−2V (x)dx. Moreover, lim
ε→0

Π∞,ε exists and is denoted by Π0.

Proof. We only need to recall that ε2
ta(t) = G−1(t) diverges with t. More explicitly, the

normalization constant is

π(t, ε) =

∫
Rd
e−2ε−2V (x)e

−2
|x|2

a(t)ε2 dx.

Let K be the compact set K := {x|V (x) ≤ 1}. There exists a constant A > 0 such that K is
included in the ball centered in 0 and with radius A. Then, on one hand, we get∫

Kc

e−2ε−2V (x)e
−2

|x|2

a(t)ε2 dx ≤
∫
Rd
e−2ε−2

e
−2

|x|2

a(t)ε2 dx ≤ C(a(t)ε2)d/2e−2ε−2

.

On the other hand we obtain,∫
K

e−2ε−2V (x)dx ≥
∫
K

e−2ε−2V (x)e
−2

|x|2

a(t)ε2 dx ≥
∫
K

e−2ε−2V (x)e
−2 A2

a(t)ε2 dx.

But we know by the Laplace formula (see [12]) that∫
K

e−2ε−2V (x)dx ∼
t→+∞

∑
i

(2πε2)d/2(det∇2V (xi))
−1/2

where (xi)i are the global minima of V (we recall that they form a finite set). As a consequence,

π(t, ε) ∼
t→+∞

∑
i

(2πε2)d/2(det∇2V (xi))
−1/2.
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By the same method, if φ is a continuous function with compact support containing for example
only the global minimum x1, we have∫

Rd
φ(x)e−2ε−2V (x)e

−2
|x|2

a(t)ε2 dx ∼
t→+∞

(2πε2)d/2(det∇2V (x1))−1/2φ(x1).

This gives the explicit form of lim
ε→0

Π∞,ε(dx) = Π0(dx). �

Consider for a moment Π∞,ε. We remark that Vt converges to V when t goes to infinity.
Hwang established in [12] that Π∞,ε converges weakly when ε converges to zero. Let N be the
set of the global minima of V . Hwang has proved the following:

• if λ(N) > 0 (where λ is the Lebesgue measure on Rd), then Π∞,ε converges weakly to
1

λ(N)
1lNdx;

• if N = {x1, . . . , xn} then Π∞,ε converges weakly to

1∑
1≤i≤n

(det∇2V (xi))−1/2

∑
1≤i≤n

(det∇2V (xi))
−1/2δxi ;

• more generally, suppose that N is the finite union of some smooth manifolds (C3), and
each component is a compact connected smooth manifold and the determinant of the
Hessian (normal to N in x ∈ N) det (∇2V (x)) is not identically zero. Then, there
exists a probability measureM, on the highest dimensional manifolds, such that Π∞,ε
converges weakly to 1∫

(det∇2V (x))−1/2M(dx)
(det∇2V (x))−1/2M(dx).

We adapt to our setting the results of Hwang in the following proposition.

Proposition 3.2. The probability measure Πt,εt converges weakly to Π0 as t goes to infinity.
Moreover, the probability measure Π0 concentrates on the global minima of V .

Proof. The result of Hwang shows that the probability measure Π∞,εt converges weakly to Π0

as t goes to the infinity, and the probability measure Π0 concentrates on the global minima of
V . We combine this result with Lemma 3.1 to prove the proposition. �

In order to show that Z converges in distribution to a measure supported on the global
minima of V , we need two more technical results. We mix the approaches initiated by Holley,
Kusuoka & Stroock [9] and Miclo [15]. Indeed, we will use some functional inequalities,
and show that the free energy (corresponding to our process) decreases. We suppose in the
following that g ◦G−1(t) = log t

k
for some k sufficiently large (and the same proof actually reads

when g ◦G−1(t) is asymptotically equivalent to log t
k

).

Definition 3.3. The maximal height of the function Vt is the non-negative function m(t)
defined by

(3.4) m(t) := sup{Ht(x)− Vt(x); x ∈ K},
where

Ht(x) := inf{Et(γ); γ ∈ C1([0, 1], K); γ(0) = x, γ(1) = 0},
Et(γ) := sup{Vt(γ(u)); u ∈ [0, 1]}.

Remark 3.1. 1) The function m(t) corresponds to the maximum of all the minimal energies
needed to go from each point of Rd to 0.
2) The function m(t) is positive if and only if there exist more than one local minimum of V .
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Lemma 3.4. We have that lim
t→∞

m(t) = m, where m is the maximal height function corre-

sponding to V .

Proof. Let M := sup{|x|2;V (x) ≤ 1}. For any path γ, we easily have Et(γ) ≤ E∞(γ) + M
a(t)

.

Then, by definition of Ht, we get

|Ht(x)−H∞(x)| ≤ M

a(t)
.

As a consequence, there exists C > 0 such that

|m(t)−m| ≤ sup

{∣∣∣∣Ht(x)−H∞(x)− |x|
2

a(t)

∣∣∣∣ ; x ∈ K
}
≤ C

a(t)

and the result follows. �

A very important theorem permits one to relate the height function to the second eigen-
value of the infinitesimal generator of Y ε (that is the constant involved in the spectral gap
inequality).

Theorem 3.5. (Jacquot [14], Thm 1.1) The invariant measure Πt,ε admits a spectral gap λ2:
there exist C1, C2, ε0 > 0 such that for all ε > ε0, one has for all continuous f ∈ L2(Πt,ε)

||P t,ε
s f − Πt,εf ||L2(Πt,ε) ≤ e−(2ε−2m(t)+logQ(ε)−log(2−ε2))sVarΠt,ε(f) = e−2λ2(t,ε)VarΠt,ε(f),

where Q(ε) = CW ε
2+C1ε

−6d(1+C2ε
−2d+2)+ ε2

C−1
W −(d−1)ε2

. Moreover, lim
ε→0

ε2 log λ2(∞, ε) = −2m.

Corollary 3.6. The family of probability measures (Πt,εt , t ≥ 0) satisfies a logarithmic Sobolev

inequality LSI(C(t)), with C(t) = Q(εt)e
2ε−2
t m(t).

Proof. Hölder’s inequality implies that the logarithmic Sobolev constant is smaller than the
inverse of the spectral gap constant in Theorem 3.5. �

We will now use some functional inequalities in order to prove the convergence of Zt (and
thus Yt) towards the global minima of V . Let p(s, x, t, y) denote the density of the semigroup
corresponding to the non-homogeneous Markov process Z.

Theorem 3.7. Suppose that ε2
t = k/ log t, where k > 2m. Then, for all initial t0, x0, the free

energy H (p(t0, x0, t, ·)|Πt,εt) converges to 0 as t goes to the infinity.

To prove Theorem 3.7, we need the three following technical results. We will first state
them all, postponing there proofs, and deduce from them the latter Theorem 3.7. Let us state
the first technical result.

Proposition 3.8. For all initial t0, x0, we get

d

dt
H (p(t0, x0, t, ·)|Πt,εt) ≤ − 2

C(t)
ε2
tH (p(t0, x0, t, ·)|Πt,εt)− 4ε̇(t)ε−3

t

∫
p(t0, x0, t, ·)(Vt− < Vt >Πt,εt

)dλ

+
2

ε2
t

∫
p(t0, x0, t, ·)(V̇t− < V̇t >Πt,εt

)dλ,

where we have denoted V̇t = ∂
∂t
Vt.
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Lemma 3.9. (Miclo, Lemma 6) Let f : [0,∞[→ R+ be a continuous function such that a.s.

f ′(t) ≤ αt − βtf(t),

where α and β are two continuous non-negative functions such that
∫∞

1
βtdt =∞ and lim

t→∞
αt/βt =

0. Then lim
t→∞

f(t) = 0.

We now need a technical lemma to conclude that the free energy converges to 0.

Lemma 3.10. For all t ≥ 0, the quantity < |x|2 >Πt,εt
is bounded.

We are now ready to prove Theorem 3.7.

Proof of Theorem 3.7. Let t0 ≥ 0 and x0 ∈ Rd. Consider the process Zt, solution to the SDE

dZt = εtdWt −
(
∇V (Zt) +

Zt
a(t)

)
dt, Zt0 = x0.

We can rewrite the result of Proposition 3.8 in the following way, where we remind that
pt = p(t0, x0, t, ·) denotes the distribution law of the process Z conditioned on Zt0 = x0

d

dt
H(pt|Πt,εt) ≤ − 2

C(t)
ε2
tH(pt|Πt,εt) +

2

ε2
t

(EV̇t(Zt)− < V̇t >Πt,εt
)

− 4ε̇tε
−3
t

(
EVt(Zt)− < Vt >Πt,εt

)
.

We remind to the reader that V (x) ≥ c|x|2 out of a compact set and it is proved in [4] that
EV (Zt) = O(1). We therefore have EVt(Zt) = O(1). Moreover, the function t 7→ a(t) is

non-decreasing while t 7→ εt is non-increasing. Thus, as V̇t(x) = − ȧ(t)
2a(t)2
|x|2, the two terms

E(V̇t(Zt)) and < Vt >Πt,εt
do not play any role in the upper bound. It now remains to find a

upper bound for < V̇t >Πt,εt
. To this aim, we use Lemma 3.10. Indeed, there exist two positive

constants M1,M2 such that

d

dt
H(pt|Πt,εt) ≤ −

2

C(t)
ε2
tH(pt|Πt,εt)−M1

ε̇(t)

ε3
t

+M2
ȧ(t)

ε2
ta(t)2

.

We now use Lemma 3.9. We easily compute the time-derivative of a(t):

ȧ(t)

a(t)2ε4
t

= − ε̇(t)

ε3
tG
−1(t)

+
1

(g ◦G−1(t))G−1(t)2ε2
t

.

Using the explicit expression of εt, that is ε2
t = k/ log t, we have

C(t)
ȧ(t)

a(t)2ε4
t

=
C(t)

2ktG−1(t)
+ C(t)

log t

k(g ◦G−1(t))G−1(t)2
.

As G−1(t) is a non-decreasing function and because of the hypothesis on k, the first term
converges to 0 when t goes to the infinity. For the second term, we recall that logG(t)/g(t) is
bounded and so,

G(t)2m(t)/k logG(t)/(g(t)t2) −→
t→∞

0,

because G(t) = o(t2). Lemma 3.9 asserts that if ε satisfies
∫∞

ε2
t

dt
C(t)

= ∞, and ε̇(t)
ε5(t)
−→
t→∞

0,

then lim
t→∞

H(pt|Πt,εt) = 0. For ε2
t = k/ log t with the given condition on the constant k, we

meet the required conditions and the result follows. �

Let us now prove Proposition 3.8 and Lemma 3.10.
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Proof of Proposition 3.8. To shorten notation, let pt := p(t0, x0, t, ·) be the distribution law
of the process Zt, knowing that Zt0 = x0. We recall that the family of probability measures
(Πt,εt , t ≥ 0) satisfies a logarithmic Sobolev inequality LSI(C(t)). We also have Πt,εt(dx) =
πt,εt(x)λ(dx). Define ht, such that

∫
h2
tdΠt,εt = 1:

ht =

√
pt
πt,εt

.

By Corollary 3.6, there exists a constant C(t) such that

(3.5) H(pt|Πt,εt) =

∫
pt log

pt
πt,εt

dλ ≤ C(t)

∫
|∇ht|2dΠt,εt .

We now have to compute the derivative of ht:

∇ht =
1

2

√
pt
πt,εt

(
∇pt
pt

+ 2
∇Vt
ε2
t

)
.

We put this last estimate in the preceding inequality (3.5) and thus

H(pt|Πt,εt) ≤
C(t)

4

∫
pt

∣∣∣∣∇ptpt + 2
∇Vt
ε2
t

∣∣∣∣2 dλ.

We recall that we are looking for an inequality including the time-derivative of the free energy
H. We have

(3.6)
d

dt
H(pt|Πt,εt) =

∫
ṗt log

pt
πt,εt

dλ−
∫
pt
π̇t,εt
πt,εt

dλ.

Our strategy is to find a upper bound for the two terms on the right hand side. The Kolmogorov
forward equation reads

(3.7) ṗt =
1

2
ε2
t∆pt +Div(pt∇Vt) = ∇ ·

(
1

2
ε2
t∇pt + pt∇Vt

)
.

We also remark that we have the following estimates:

π̇t,εt
πt,εt

= 4
ε̇(t)

ε3
t

(
Vt− < Vt >πt,εt

)
− 2

ε2
t

(V̇t− < V̇t >Πt,εt
),(3.8)

where we have used the usual notation < f >Πt,εt
=
∫
fdΠt,εt . Moreover, we also find

(3.9)
∇πt,εt
πt,εt

= −2
∇Vt
ε2
t

.

Now put the first estimate (3.8), as well as the Kolmogorov equation (3.7), in the formula (3.6).
We integrate by parts and use the logarithmic Sobolev inequality (3.5) to get∫

log
pt
πt,εt

ṗtdλ =

∫
log

pt
πt,εt
∇ ·
(

1

2
ε2
t∇pt + pt∇Vt

)
dλ

= −
∫ (

∇pt
pt
− ∇πt,εt

πt,εt

)(
1

2
ε2
t∇pt + pt∇Vt

)
dλ

= −
∫ (

∇pt
pt

+ 2
∇Vt
ε2
t

,
1

2
ε2
t∇pt + pt∇Vt

)
dλ = −ε

2
t

2

∫
pt

∣∣∣∣∇ptpt + 2
∇Vt
ε2
t

∣∣∣∣2 dλ

≤ − 2

C(t)
ε2
tH(pt|Πt,εt).
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On the other hand, we obtain the following equality for the second integral involved in the
time-derivative of H:∫

pt
π̇t,εt
πt,εt

dλ = 4
ε̇(t)

ε3
t

∫
pt(Vt− < Vt >Πt,εt

)dλ− 2

ε2
t

∫
pt(V̇t− < V̇t >Πt,εt

)dλ.

We put all the pieces together and this leads to the result. �

Proof of Lemma 3.10. Let K be the compact set K := {x;V (x) ≤ η} where η is a given
positive constant. As Πt,εt converges weakly to Π0, we only need to prove that < |x|21lKc >Πt,εt
is bounded. We have∫
Kc

|x|2e−2ε−2
t V (x)e

−2
|x|2

a(t)ε2t dx ≤
∫
Kc

|x|2e−2V (x)e−2V (x)(ε−2
t −1)dx ≤

∫
Kc

|x|2e−2V (x)dxe−2η(ε−2
t −1).

By Proposition 3.2, we know that π(t, εt) ∼
t→+∞

∑
i(2πε

2
t )
d/2(det∇2V (xi))

−1/2, and so there

exists a positive constant C̃ such that

< |x|21lKc >Πt,εt
≤ C̃ε−dt e−2ηε−2

t →
t→+∞

0. �

We will now describe the law of the limit process Y∞.

Proposition 3.11. The speed of convergence of H(p(t0, x0, t, ·)|Πt,εt) toward 0 is 1/(G−1(t) log t).

Proof. By Lemma 3.9, the speed of convergence is given by
∫ t

0
αse

−
∫ t
s βudu ds, with βs =

s2m/k/ log s and αs = (sG−1(s))−1 + log s(g ◦ G−1(s)G−1(s)2)−1. Integrating by part, we find

that
∫ t

0
βsds is equivalent, when t goes to the infinity, to t1+2m/k/ log t and thus, the speed

of convergence is of order (G−1(t) log t)−1 + (g ◦ G−1(t)(G−1(t))2)−1. Finally, the speed of
convergence of the relative Kullback information to zero is (G−1(t) log t)−1 = o((log t)−1). �

Remark 3.2. It is known since the work of Freidlin and Wentzell [6], that the Gibbs measure
Πt,εt satisfies a large deviation principle. Therefore, the speed of convergence of Πt,εt toward
Π0 is exponential (e− log t/2k = t−1/2k).

Corollary 3.12. Suppose that ε2
t = k/ log t, where k > 2m. Then the process Z converges in

distribution to a random variable which concentrates on the global minima of V . Thus, the
process Y converges in distribution to a random variable Y∞, which concentrates on the global
minima of V .

Proof. The Kullback information H(pt|Πt,εt) estimates the distance between pt and Πt,εt , as it
is recalled in (2.5). The result follows as Πt,εt converges weakly to Π0. �

Remark 3.3. The function ε is supposed to decrease slowly to zero. This is why we ob-
tain the convergence of Y to the global minima of V . But if ε goes too fast to zero, that is
lim
t→∞

g(t)−1 logG(t) = k with k ≤ 2m, then Y may freeze in a local minimum. So, X does not

converge in that case.

3.2. Study of X. We give necessary and sufficient conditions for the convergence in distri-
bution of X. As usual, we start to work with the process Yt = Xt − µt. In order to link this
section with the preceding one, we recall that ε2

t = (g ◦ G−1(t))−1 = k/ log t. It implies that
we consider functions g such that (asymptotically) logG(t) = kg(t).

Let us first recall a former result.
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Theorem 3.13. (Chambeu-Kurtzmann [4, Thm5.5]) The process Y satisfies the pointwise
ergodic theorem. This means that a.s., the empirical measure of Y converges weakly to a
random measure, which is a convex combination of Dirac measures taken in the minimal
points of V . More precisely, there exist ai ≥ 0 such that

1

t

∫ t

0

δYsds −→
t→∞

n∑
i=1

aiδmi a.s.

We are now able to conclude the study of the asymptotic behaviour of the process X.

Theorem 3.14. Suppose that lim
t→∞

g(t)−1 logG(t) = k > 2m. Then one of the following holds:

(1) If V is a function such that
∑

1≤i≤n
aimi = 0, then Xt converges in distribution to Y∞ +∫∞

0
Ys

ds
s

;
(2) Else, Xt diverges.

Proof. Suppose that V is such that the integral
∫ t

0
Ys

ds
s

converges a.s. The celebrated Slutsky

theorem asserts that for two sequences (Ut), (Wt) of Rd valued random variables, if Ut
(d)−→
t→∞

U

and |Ut − Wt|
P−→

t→∞
0, then Wt

(d)−→
t→∞

U . To prove the result, we let Ut = µt =
∫ t

0
ds
s
Ys =

1
t

∫ t
0
Ysds+

∫ t
0

1
s2

∫ s
0
Yududs, Wt = Xt and remark that

Xt = Yt +

∫ t

0

ds

s
Ys = Yt + µt.

Suppose that V is such that
∑

1≤i≤n
aimi = 0. By Theorem 3.13, we have that 1

t

∫ t
0
Ysds

a.s.−−→ 0,

and we now need to find the rate of convergence in order to conclude the proof. Moreover,
by [4, Prop5.3], we know that the speed of convergence of the empirical mean of the time-
changed process YG−1(t) is G−1(1+t)−G−1(t). But we are looking for the speed of convergence
for Yt itself. By an integration by part, we obtain that

1

t

∫ t

0

Ysds =
1

t

∫ G(t)

0

YG−1(u)

du

g ◦G−1(u)

=
1

tg(t)

∫ G(t)

0

YG−1(u)du+
1

t

∫ G(t)

0

du
g′ ◦G−1(u)

(g ◦G−1(u))3

∫ u

0

YG−1(s)ds.

Corollary 3.12 implies that the first right-hand term converges in distribution to 0 because
G(t) ≤ tg(t). So it converges in probability to 0. It remains to prove the convergence of the
second term. We recall that, up to a multiplicative positive constant, g ◦G−1(u) = log(2 +u).
Moreover, we also know that 1

u

∫ u
0
YG−1(s)ds is a.s. bounded. So, the second right-hand term

is upper bounded (up to a multiplicative positive constant) by

1

t

∫ G(t)

0

du

(log(2 + u))2
=

G(t)

t(logG(t))2
+ o

(
G(t)

t(logG(t))2

)
≤ g(t)

logG(t)

1

logG(t)

and the result follows: µ̄t = Ut converges in distribution. And by Corollary 3.12, Yt converges
in distribution to Y∞ which law concentrates on the global minima of V . So, Yt = Ut −Wt

converges in probability to 0.



CONVERGENCE IN DISTRIBUTION OF SOME SELF-INTERACTING DIFFUSIONS 13

To conclude, if V satisfies
∑

1≤i≤n
aimi 6= 0 then µ̄t =

∫ t
0
Ys

ds
s

does not converge and so Xt

diverges. �

4. Convergence in distribution of X to a random variable

In this Section, we will prove that if g converges to 1 or 0 slowly enough, then the process
X converges in distribution to an identified limit. We will first study the case g ≡ 1 and prove
rigorously the convergence of µ̄t. Then, we will consider the case g(t) → 0 and tg(t) → +∞.
The proof of the convergence of µ̄t will be exactly the same as in the case g = 1 and so, we will
not reproduce it. Nevertheless, the convergence of Y will be interesting and §4.2 is essentially
devoted to its proof.

4.1. If g converges toward a positive constant. In this part, we suppose that g converges
toward a positive constant, so that its primitive G goes to the infinity. In that case, we will
show that the asymptotic behaviour of Y is very close to the behaviour of ξ, solution to

dξt = dBt − g(t)∇V (ξt)dt.

Without any loss of generality, we suppose that g(t) = 1 for t large enough. Actually, we will

prove that Y converges toward a random variable of law Π(dx) = e−2V (x)

π
dx. (Remark that the

normalization constant π is well-defined as V is strictly convex out of a compact set.) To this
aim, we will use the exponential decrease to zero of the relative Kullback information between
the law of YG−1(t) and Π. Once this is done, we study the convergence of the mean 1

t

∫ t
0
Ysds.

Indeed, we will prove that the latter integral converges if and only if
∫
xdΠ(x) = 0.

Theorem 4.1. Xt −X0 converges in distribution to Y∞ if and only if
∫
xe−2V (x)dx = 0. In

that case, Y∞ has the distribution law e−2V

π
.

The proof of this statement will be decomposed into several propositions and lemmas. We
first present them all, postponing their proofs. Then, we deduce from them Theorem 4.1. Fi-
nally, we prove these intermediate results. Let us state the first of the propositions mentioned,
the one showing that the time-shifted process (YG−1(t))t, and so (Yt)t converges in distribution.

Proposition 4.2. The process (Yt)t converges in distribution to a random variable Y∞. The

distribution law of Y∞ is e−2V

π
.

Next, we have to show that either µ̄t =
∫ t

0
Ys
s

ds converges a.s. toward x = X0 for suitable
functions V , or diverges.

Proposition 4.3. µ̄t converges almost surely as t→∞ if and only if
∫
xe−2V (x)dx = 0.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Recall that Xt = Yt + µ̄t. Proposition 4.2 asserts that Yt converges in
distribution to Y∞. Moreover, µ̄t converges almost surely to µ̄∞ = x iif

∫
xe−2V (x)dx = 0 by

Proposition 4.3. So, we use Slutsky’s theorem: µ̄t − µ̄∞ converges a.s. to 0, and Yt converges
in distribution to Y∞, so Yt + (µ̄t − µ̄∞) goes in distribution to Y∞. �

Let us now prove Propositions 4.2-4.3.
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Proof of Proposition 4.2. We will show that the process (Yt)t converges in distribution to Y∞.
Let pt denote the law of Yt. By Lemma 2.3, the probability measure Π = e−2V /π (where π
denotes the normalization constant of Π) satisfies a logarithmic Sobolev inequality LSI(CLS).
By inequality (2.6), we know that

H(pt|Π) ≤ CLS

∫ ∣∣∣∣∇(√pt
Π

)∣∣∣∣2 dλ.

As ∇
(√

pt
Π

)
=
√
πpt

eV

2

(
∇pt
pt

+ 2∇V
)

, we deduce that

(4.1) H(pt|Π) ≤ CLS
4

∫
pt

∣∣∣∣∇ptpt + 2∇V
∣∣∣∣2 dλ.

Moreover, by definition of the relative Kullback information, it is clear that d
dt
H(pt|Π) =∫

ṗt log
(
pt
Π

)
dλ. The Kolmogorov-forward equation also reads

(4.2) ṗt =
1

2
∆pt + (∇pt,∇V ) = ∇ ·

(
1

2
∇pt + pt∇V

)
,

and putting this last estimate in the previous time-derivative equation of H, we have:

d

dt
H(pt|Π) =

∫
ṗt log

(pt
Π

)
dλ =

∫
∇ ·
(

1

2
∇pt + pt∇V

)
log
(pt

Π

)
dλ

= −
∫ (

1

2
∇pt + pt∇V,

∇pt
pt

+ 2∇V
)

dλ

= −1

2

∫
pt

∣∣∣∣∇ptpt + 2∇V
∣∣∣∣2 dλ ≤ −2

CLS
H(pt|Π).

So, H(pt|Π) converges to zero exponentially fast. This means that ‖pt−Π‖2
TV ≤ 2H(pt|Π)→ 0,

that is Yt converges in distribution toward a random variable Y∞. The distribution law of Y∞
is Π and the speed of convergence is exponential. �

Proof of Proposition 4.3. Let ȳt := 1
t

∫ t
0
Ysds. We have to show that ȳt converges almost surely

to ȳ∞ =
∫
xΠ(dx). First, we decompose µ̄t in the following way

µ̄t = x+

∫ t

0

Ys
ds

s
= x+

1

t

∫ t

0

Ysds+

∫ t

0

1

s2

∫ s

0

Yududs.

We then have

(4.3) µ̄t = x+ ȳt +

∫ t

0

1

s
ȳsds.

Let us introduce the positive recurrent Kolmogorov process (ξt, t ≥ 0), solution to dξt =
dBt − ∇V (ξt)dt. The invariant probability measure associated to ξ is precisely Π. As ξ is
pointwise ergodic, we have for all h ∈ L1(Π):

(4.4) lim
t→∞

1

t

∫ t

0

h(ξs)ds =

∫
hdΠ a.s.

with an exponential speed of convergence (see for instance [17]).
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Let us now prove the almost sure convergence of ȳt. We have:

ȳet+s − ȳet =

∫ t+s

t

(Yeu − ȳeu)du =

∫ s

0

(ȳ∞ − ȳet+u)du+

∫ s

0

(Yet+u − ȳ∞)du.

We will now need the following technical result.

Lemma 4.4. For all T > 0, limt→∞ sup0≤s≤T
∣∣∫ s

0
(Yet+u − ȳ∞)du

∣∣ = 0 almost surely.

Assuming the validity of this statement, the process (ȳet)t is an asymptotic pseudotrajectory
for the flow d

dt
φt(x) = ȳ∞−φt(x), φ0(x) = x. The flow induced by φ admits a unique limit point

{ȳ∞}, which is exponentially attracted. Thus, ȳt converges a.s. to ȳ∞ (with an exponential
speed of convergence).

Let us now estimate the distance between Ys+et and ξs+et , knowing that Yet = ξet . As W is
strictly convex, and ∇χ is Cχ-Lipschitz, we obtain the following inequality:

1

2

d

dt
|Ys+et − ξs+et|2 = −(∇V (Ys+et)−∇V (ξs+et), Ys+et − ξs+et)−

1

s+ et
(Ys+et , Ys+et − ξs+et)

≤ −(CW − Cχ)|Ys+et − ξs+et |2 +
1

2(s+ et)
|ξs+et |2,

because −2(y, y − z) ≤ |z|2. So, we have the following bound on the square-distance:

|Ys+et − ξs+et|2 ≤ e−2(CW−Cχ)s

∫ s

0

e(CW−Cχ)u|ξu+et |2
du

u+ et
.

Once again, the ergodicity of ξ implies that 1
s

∫ s
0
|ξu+et |2du converges a.s. (as s → ∞) to∫

|x|2Π(dx). So there exists C > 0 such that∫ s

0

e(CW−Cχ)u|ξu+et |2
du

u+ et
≤ e−t

(∣∣∣∣∫ s

0

e(CW−Cχ)u(|ξu+et |2 −
∫
|x|2Π(dx))du

∣∣∣∣
+
e(CW−Cχ)s

CW − Cχ

∫
|x|2Π(dx)

)
≤ Ce−te(CW−Cχ)s

∫
|x|2Π(dx).

And thus |Ys+et − ξs+et |2 ≤ Ce−t a.s. So

(4.5)

∫ et(es−1)

0

Yv+et − ξv+et

v + et
dv = O(e−t).

To prove Proposition 4.3, we use the decomposition (4.3). It is obvious from that decompo-
sition that if ȳ∞ =

∫
xΠ(dx) 6= 0, then µ̄t does not converge and in that case µ̄t ∼ ȳ∞ log t.

Suppose now that ȳ∞ = 0. As

ȳs =
1

s

∫ s

0

Yudu =
1

s

∫ s

0

(Yu − ξu)du+
1

s

∫ s

0

ξudu,

and by equation (4.4), there exists a positive constant a such that
∣∣1
s

∫ s
0
ξudu

∣∣ ≤ e−as, we

get that |ȳs| = O(s−a) with a > 0. So, the integral
∫ t

0
1
s
ȳsds converges a.s., implying the

convergence of the empirical mean µ̄t. �
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Proof of Lemma 4.4. Let t ≥ 0. We have

dYs+et = dBs+et −
(
∇V (Ys+et) +

Ys+et

s+ et

)
ds.

Let us prove that the drift term
Ys+et

s+et
is negligible for t large enough. Let T ≥ 0. For any

0 ≤ s ≤ T , we have∫ s

0

(Yet+u − ȳ∞)du =

∫ et(es−1)

0

Yv+et − ξv+et

v + et
dv +

∫ et(es−1)

0

ξv+et − ȳ∞
v + et

dv,(4.6)

where ξet = Yet . We emphasize that ξ and Y are driven by the same Brownian motion.
We have already proved in equation (4.5) that the first right-hand term of (4.6) converges
(exponentially fast) to 0. Let us now study the most right-hand side of (4.6). An integration
by parts leads to∫ et(es−1)

0

ξv+et − ȳ∞
v + et

dv =
es − 1

es

(
1

et(es − 1)

∫ et(es−1)

0

ξu+etdu− ȳ∞

)
+(4.7)

+

∫ et(es−1)

0

v

(v + et)2

(
1

v

∫ v

0

ξu+etdu− ȳ∞
)

dv.

The ergodicity (4.4) of ξ implies directly that 1
et(es−1)

∫ et(es−1)

0
ξu+etdu− ȳ∞ converges a.s. to 0

(as t→∞), with an exponential speed of convergence. So, there exist two positive constants
a, C such that a.s.∣∣∣∣∣
∫ et(es−1)

0

v

(v + et)2

(
1

v

∫ v

0

ξu+etdu− ȳ∞
)

dv

∣∣∣∣∣ ≤ e−2t

∫ et(es−1)

0

∣∣∣∣1v
∫ v

0

ξu+etdu− ȳ∞
∣∣∣∣ dv

≤ Ce−2t

∫ et(es−1)

0

e−avdv −→t→∞ 0.

So, limt sup0≤s≤T

∣∣∣∫ et(es−1)

0

ξv+et−ȳ∞
v+et

dv
∣∣∣ = 0 a.s. Finally, putting all the pieces together we have

shown that ȳet is an asymptotic pseudotrajectory for the flow generated by φ. �

4.2. If g(t) goes to zero and tg(t) goes to c ∈]0,+∞]. The technique we adopt here is
a change of scale added to a change of measure. This is useful as soon as we wish to study
the asymptotic or ergodic behaviour of a non-homogeneous process, as it usually permits to
“reduce” to the homogeneous case.

4.2.1. If tg(t) goes to a positive constant. In this part, we suppose without any loss of gener-
ality that tg(t) = 1. Indeed, Y is solution to the SDE

(4.8) dYt = dBt −
1

t
(∇V (Yt) + Yt)dt.

Theorem 4.5. Suppose that there exists n ≥ 1 such that V (x)
|x|2n converges to a positive constant

and g(t) = 1
t
. Then, Xt converges in distribution to Y∞+ µ̄∞ if and only if

∫
xe−2V (x) dx = 0

and n > 3/2. In that case, Y∞ has the distribution law e−2V (x) dx (up to a positive multiplica-
tive constant).
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Proof. The proof is similar to the one of Theorem 4.1. If V is polynomial, or V (x) = c|x|2n

(for c > 0), then letting Ỹt :=
√

n−1
n
t−

1
2(n−1)Y

t
n
n−1

, we find that Ỹ satisfies

dỸt = dBt −
(

2cn|Ỹt|2n−2Ỹt +
2n+ 1

2(n− 1)t
Ỹt

)
dt.

Now, we can approximate the potential V by c|x|2n (for a well-chosen n ≥ 1) such that the
studied process Ỹ has the same asymptotic behaviour as

dξt = dBt −
(
∇V (ξt) +

2n+ 1

2(n− 1)t
ξt

)
dt

in the sense of asymptotic pseudotrajectory. Actually, one easily shows that if
∫
xe−2V (x) dx =

0, then for all T > 0

(4.9) sup
0≤s≤T

|Ỹs+et − ξs+et |2 = O(e−t).

This has been already shown for Lemma 4.4 and we do not reproduce the proof here. Finally,
this proves that Ỹ has the same ergodic behaviour as ξ (see [3]). So, as ξ is ergodic and

almost surely 1
t

∫ t
0
ξs ds converges, the limit points of 1

t

∫ t
0
δỸs ds are included into the set of

the invariant measures of ξ, that is e−2V (x)dx. So 1
t

∫ t
0
Ỹs ds goes to zero iif

∫
xe−2V (x) dx = 0.

By (4.9), the asymptotic pseudotrajectory has a polynomial speed. Moreover, ξ converges to

its invariant probability measure with an exponential speed. Thus, 1
t

∫ t
0
Ỹs ds converges a.s.

to zero with a polynomial speed of convergence (of the order of 1/t) if
∫
xe−2V (x) dx = 0 (and

diverges otherwise). Now, remembering that Ỹs = s−
1

2(n−1)Y
s

n
n−1

, we conclude that

(4.10)
1

t

∫ t

0

Ỹs ds =
1

t

∫ t
n
n−1

0

Yu
du

u
3
2n

−→ 0 a.s.

Indeed, we have

1

t

∫ t
n
n−1

0

Yu
du

u
3
2n

=
1

t1+ 3
2(n−1)

∫ t
n
n−1

0

Yu du− 1

t

∫ t
n
n−1

0

u−1− 3
2n

∫ u

0

Ys ds du = O(t−1) a.s.

And thus, 1
T

∫ T
0
Yu du converges a.s. to 0 (with T = t

n
n−1 ) iif n > 3/2. We then refer to §4.1

to obtain the convergence of the process X. �

We also remark that this result is coherent with the basic Ornstein-Uhlenbeck case.

4.2.2. If tg(t) goes to the infinity. This study will be divided into two different cases. First,
we suppose that there exists 0 < α < 1 such that tαg(t) goes to a positive constant. Whereas
in the second case, tαg(t) goes to the infinity for any 0 < α < 1 (this is for instance satisfied
by g(t) = 1/ log t). The first part of the study is identical for the two cases and we will only
divide the end of the study.

Theorem 4.6. Suppose that there exists n ≥ 1 such that V (x)
|x|2n converges to a positive constant.

(1) If there exists 0 < α < 1 such that g(t) = tα, then Xt converges in distribution to
Y∞ + µ̄∞ if and only if

∫
xe−2V (x) dx = 0 and n > 4α.

(2) If tαg(t) → +∞ for all 0 < α < 1, then Xt converges in distribution to Y∞ + µ̄∞ if
and only if

∫
xe−2V (x) dx = 0.
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Let us sketch the proof of Theorem 4.6, that is postponed to the end of the paragraph.
As in the preceding paragraph, we first suppose that V (x) = c|x|2n. Define f as the positive
increasing solution to g ◦ f(t) = (f ′(t))−n. Consider the time and scale-changed process Ỹ

defined by Ỹt :=
Yf(t)√
f ′(t)

. Applying Itô’s formula to Ỹ , we thus find that Ỹ satisfies the SDE

(4.11) dỸt = dBt −
(

2ncỸt|Ỹt|2n−2 +

(
f ′(t)

f(t)
+
f ′′(t)

2f ′(t)

)
Ỹt

)
dt.

Now, we approximate the potential V by |x|2n for a well-chosen n ≥ 1. So, the studied process
Ỹ has the same asymptotic behaviour as

(4.12) dξt = dBt −
(
∇V (ξt) +

ξt
β(t)

)
dt,

where β(t) is defined by 1
β(t)

= f ′(t)
f(t)

+ f ′′(t)
2f ′(t)

(this last quantity goes to 0 as t tends to +∞).

Define also the process Ŷ as the solution to the SDE

(4.13) dŶt = dBt −∇V (Ŷt)dt.

Lemma 4.7. The process ξ (and also Ỹ ) is an asymptotic pseudotrajectory for the process Ŷ :

for all t, T > 0, we have sup0≤s≤T |Ŷs+t − ξs+t| = O(β(t)−1/2) a.s.

Proof. Let t > 0 and 0 ≤ s ≤ T . Itô’s formula implies that

1

2

d

dt
|Ŷs+t − ξs+t|2 = −(∇V (Ŷs+t)−∇V (ξs+t), Ŷs+t − ξs+t) +

1

β(s+ t)
(ξs+t, Ŷs+t − ξs+t)

≤ −(CW − Cχ)|Ŷs+t − ξs+t|2 +
1

2β(s+ t)
|Ŷs+t|2.

So, we find that

|Ŷs+t − ξs+t|2 ≤ e−2(CW−Cχ)s

∫ s

0

e(CW−Cχ)u|Ŷu+t|2
du

β(u+ t)
.

Let us note π =
∫
e−2V (x)dx the normalisation constant. The ergodicity of Ŷ implies the

existence of C > 0 such that∫ s

0

e(CW−Cχ)u|Ŷu+t|2
du

β(u+ t)
≤ 1

β(t)

{∣∣∣∣∫ s

0

e(CW−Cχ)u

(
|Ŷu+t|2 −

∫
|x|2 e

−2V (x)

π
dx

)
du

∣∣∣∣
+
e(CW−Cχ)s

CW − Cχ

∫
|x|2 e

−2V (x)

π
dx

}
≤ C

β(t)
e(CW−Cχ)s

∫
|x|2e−2V (x) dx.

This leads to the result. And also there exists a constant M > 0 such that a.s.

(4.14) sup
0≤s≤T

|Ŷs+t − ξs+t|2 ≤
M

β(t)
.

�

Proof of Theorem 4.6. Lemma 4.7 proves that 1
t

∫ t
0
Ỹu du converges a.s. to 0 iif

∫
xe−2V (x) dx =

0. Moreover, we see by a similar Eq. (4.14) that Ỹ is an asymptotic pseudotrajectory for Ŷ

with the speed of convergence 1√
β(t)

. As Ŷ converges to its invariant probability measure
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e−2V (x)dx with an exponential speed of convergence, we find that 1
t

∫ t
0
Ỹs ds converges a.s. to 0

iif
∫
xe−2V (x) dx = 0 and in that case, we have the following result, depending on the function

g.
1) First, suppose that g(t) = t−α for a given 0 < α < 1. We thus have f(t) = t

n
n−α and

1
t

∫ t
0
Y
s

n
n−α

ds

s
α

2(n−α)
= 1

t

∫ t n
n−α

0
Yu

du

u
3α
2n

converges to 0 iif
∫
xe−2V (x) dx = 0. Then, a.s.

∣∣∣ 1
T

∫ T
0
Yu du

∣∣∣
behaves asymptotically as T

2α
n
− 1

2 , where T = t
n

n−α and thus it converges to zero iif n > 4α.
2) Suppose now that tαg(t) → ∞ for all 0 < α < 1. This implies that g(t) ≥ t−α for any

0 < α < 1 and so f(t) ≤ t
n

n−α and 0 ≤ −g′(t)
g(t)
≤ α

t
. So

1

t

∫ t

0

Ỹsds =
1

t

∫ f(t)

f(0)

Yu
du

(f ′ ◦ f−1(u))3/2

and for T = f(t), the mean
∣∣∣ 1
T

∫ T
0
Yu du

∣∣∣ is a.s. upper bounded by f(t)

t(f ′(t))3/2
√
β(t)

. As

1

β(t)
=
f ′(t)

f(t)
+
f ′′(t)

2f(t)
≤ (g ◦ f(t))−1/n

f
+

α

nf(t)(g ◦ f(t))2/n
≤ 1√

f(t)(g ◦ f(t))1/n
,

we find that

f(t)

t(f ′(t))3/2
√
β(t)

≤
√
f(t)(g ◦ f(t))

1
2n

t
≤ (g ◦ f(t))

1
2n t

n
2(n−α)−1.

This last term goes to 0 if n > 2α. As α is arbitrary chosen between 0 and 1, we conclude

that
∣∣∣ 1
T

∫ T
0
Yu du

∣∣∣ converges a.s. to 0 for any n ≥ 1. �
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