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Abstract

This article is concerned with the exponential stability and the uniform propagation
of chaos properties of a class of Extended Ensemble Kalman-Bucy filters with respect
to the time horizon. This class of nonlinear filters can be interpreted as the conditional
expectations of nonlinear McKean-Vlasov type diffusions with respect to the observation
process. We consider filtering problems with Langevin type signal processes observed
by some noisy linear and Gaussian type sensors. In contrast with more conventional
Langevin nonlinear drift type processes, the mean field interaction is encapsulated in the
covariance matrix of the diffusion. The main results discussed in the article are quan-
titative estimates of the exponential stability properties of these nonlinear diffusions.
These stability properties are used to derive uniform and non asymptotic estimates
of the propagation of chaos properties of Extended Ensemble Kalman filters, includ-
ing exponential concentration inequalities. To our knowledge these results seem to be
the first results of this type for this class of nonlinear ensemble type Kalman-Bucy filters.
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1 Introduction

From the probabilistic viewpoint, the Ensemble Kalman filter (abbreviated EnKF) proposed
by G. Evensen in the beginning of the 1990s [I5] is a mean field particle interpretation
of extended Kalman type filters. More precisely, Kalman type filters (including the con-
ventional Kalman filter and extended Kalman filters) can be interpreted as the conditional
expectations of a McKean-Vlasov type nonlinear diffusion. The key idea is to approximate
the Riccati equation by a sequence of sample covariance matrices associated with a series of
interacting Kalman type filters.

In the linear Gaussian case these particle type filters converge to the optimal Kalman
filter as the number of samples (a.k.a. particles) tends to co. Little is known for nonlinear
and/or non Gaussian filtering problems, apart that they do not converge to the desired
optimal filter. This important problem is rather well known in signal processing community.
For instance, we refer the reader to |21, 23] for a more detailed discussion on these questions
in discrete time settings. In this connection, we mention that these ensemble Kalman



type filters differ from interacting jump type particle filters and related sequential Monte
Carlo methodologies. These mean field particle methods are designed to approximate the
conditional distributions of the signal given the observations. It is clearly not the scope
of this article to give a comparison between these two different particle methods. For a
more thorough discussion we refer the reader to the book [12] and the references therein.
We also mention that the EnKF models discussed in this article slightly differ from more
conventional EnKF used to approximate nonlinear filtering problems. To be more precise
we design a new class of EnKF that converges to the celebrated extended Kalman filter as
the number of particles goes to 0.

These powerful Monte Carlo methodologies are used with success in a variety of scientific
disciplines, and more particularly in data assimilation method for filtering high dimensional
problems arising in fluid mechanics and geophysical sciences [25, 26], 27, 29] 311, 32] [34], 35|
37). A more thorough discussion on the origins and the application domains of EnKF is
provided in the series of articles [5, [13] [16] 18] and in the seminal research monograph by
G. Evensen [17].

The mathematical foundations and the convergence of the EnKF have started in 2011
with the independent pioneering works of F. Le Gland, V. Monbet and V.D. Tran [23], and
the one by J. Mandel, L. Cobb, J. D. Beezley [29]. These articles provide Ls-mean error
estimates for discrete time EnKF and show that they converge towards the Kalman filter
as the number of samples tends to infinity. We also quote the recent article by D.T. B.
Kelly, K.J. Law, A. M. Stuart [2I] showing the consistency of Ensemble Kalman filters in
continuous and discrete time settings. In the latter the authors show that the Ensemble
Kalman filter is well-posed and the mean error variance does not blow up faster than ex-
ponentially. The authors also apply a judicious variance inflation technique to strengthen
the contraction properties of the Ensemble Kalman filter. We refer to the pioneering article
by J.L. Anderson [I], 2, 3] on adaptive covariance inflation techniques, and to the discussion
given in the end of Section [2|in the present article.

In a more recent study by X. T. Tong, A. J. Majda and D. Kelly [36] the authors
analyze the long-time behaviour and the ergodicity of discrete generation EnKF using Foster-
Lyapunov techniques ensuring that the filter is asymptotically stable w.r.t. any erroneous
initial condition. These important properties ensure that the EnKF has a single invariant
measure and initialization errors of the EnKF will not dissipate w.r.t. the time parameter.
Beside the importance of these properties, the only ergodicity of the particle process does
not give any information on the convergence and the accuracy of the particle filters towards
the optimal filter nor towards any type of extended Kalman filter, as the number of samples
tends to infinity.

Besides these recent theoretical advances, the rigorous mathematical analysis of long
time behaviour of these particle methods is still at its infancy. As underlined by the authors
in [21], many of the algorithmic innovations associated with the filter, which are required
to make a useable algorithm in practice, are derived in an ad hoc fashion. The divergence
of ensemble Kalman filters has been observed numerically in some situations [20, 22 28],
even for stable signals. This critical phenomenon, often referred as the catastrophic filter
divergence in data assimilation literature, is poorly understood from the mathematical per-
spective. Our objective is to better understand the long time behaviour of ensemble Kalman
type filters from a mathematical perspective. Our stochastic methodology combines spec-
tral analysis of random matrices with recent developments in concentration inequalities,



coupling theory and contraction inequalities w.r.t. Wasserstein metrics.

These developments have been started in two recent articles [13] 14]. The first one pro-
vides uniform propagation of chaos properties of ensemble Kalman filters in the context
of linear-Gaussian filtering problems. The second article is only concerned with extended
Kalman-Bucy filters. It discusses the stability properties of these filters in terms of exponen-
tial concentration inequalities. These concentration inequalities allow to design confidence
intervals around the true signal and extended Kalman-Bucy filters. Following these studies,
we consider filtering problems with uniformly stable signal processes.

This condition on the signal is a necessary and sufficient condition to derive uniform
estimates for any type of particle filters [11], 12), 13] w.r.t. the time parameter. For instance
when the sensor matrix is null or for a single particle any Ensemble type type filter reduces
to an independent copy of the signal. In these rather elementary cases, the stability of the
signal is required to have any type of uniform estimate for any size of the systems.

We illustrate these models and our stability and observability conditions with a class of
nonlinear Langevin type filtering problems, with several classes of sensor models

The first contribution of the article is to extend these results as the level of the McKean-
Vlasov type nonlinear diffusion associated with the ensemble Kalman-Bucy filter. Under
some natural regularity conditions we show that these nonlinear diffusions are exponentially
stable, in the sense that they forget exponentially fast any erroneous initial condition. These
stability properties are analyzed using coupling techniques and expressed in terms of o-
Wasserstein metrics.

The main objective of the article is to analyze the long-time behaviour of the mean
field particle interpretation of these nonlinear diffusions. We present new uniform estimates
w.r.t. the time horizon for the bias and the propagation of chaos properties of the mean
field systems. We also quantify the fluctuations of the sample mean and covariance particle
approximations.

The rest of the article is organized as follows:

Section [I.2| presents the nonlinear filtering problem discussed in the article, the Extended
Kalman-Bucy filter, the associated nonlinear McKean-Vlasov diffusion and its mean field
particle interpretation. The two main theorems of the article are described in Section
In a preliminary short section, Section [3] we show that the conditional expectations and
the conditional covariance matrices of the nonlinear McKean-Vlasov diffusion coincide with
the EKF. We also provide a pivotal fluctuation theorem on the time evolution of these
conditional statistics. Section [4] is mainly concerned with the stability properties of the
nonlinear diffusion associated with the EKF. Section [p| is dedicated to the propagation of
chaos properties of the extended ensemble Kalman-Bucy filter.

1.1 Some basic notation

This section provides with some notation and terminology used in several places in the
article.

Given some random variable Z with some probability measure p and some function f
on some product space R", we let

u(f) = E(/(2)) = f f(2) ulde)



be the integral of f w.r.t. u or the expectation of f(Z). This notation is rather standard in
probability theory. It extends to integral on Euclidian state spaces the conventional vector
summation notation u(f) = >, u(x) f(x) between row vector measures p = (u(x))zep and
dual column vector functions f = (f(z))zer on finite state spaces E = {1,...,d}, for some
parameter d > 1.

We let |.| be the Euclidean norm on R", for some r > 1. We denote by S, the set
of (r x r) symmetric matrices with real entries, and by S the subset of positive definite
matrices.

We denote by Apin(S) and Ajpaz(S) the minimal and the maximal eigenvalue of a given
symmetric matrix S. We let p(P) = Anaz((P + P’))/2 be the logarithmic norm of a given
square matrix P. Given (r; x r2) matrices P, we define the Frobenius inner product

(P,Q) = tr(P'Q) and the associated norm |P|% = tr(P'P)

where tr(C') stands for the trace of a given matrix C. We also equip the product space
R™ x R"™*"™ with the inner product

{x1, Pr), (x2, P2)) := {x1,22) + (P1, P2) and the norm |(z, P)H2 = {(x, P), (z, P)).

Given some ¢ > 1, the §-Wasserstein distance Wy between two probability measures vy
and vy on some normed space (E, |.|) is defined by

. 1/
Ws(vr,v) = infE (|21 — Z]°) .

The infimum in the above displayed formula is taken of all pair of random variable (Z7, Z2)
such that Law(Z;) = v;, with ¢ = 1, 2.

In the further development of the article, to avoid unnecessary repetitions we also use
the letter ”¢” to denote some finite constant whose values may vary from line to line, but
they do not depend on the time parameter.

1.2 Description of the models

Consider a time homogeneous nonlinear filtering problem of the following form

— 1/2
{ dXp = AXy) dt + By dW; and we set Gy = o (Y, s <t). (1)

dY, = BX,dt + RY*dV,
In the above display, (W3, V;) is an (r1 +72)-dimensional Brownian motion, X is a r1-valued
random vector with mean and covariance matrix (E(Xy), Py) (independent of (W, V})), the
square root factors R}/ * and R;/ ® of Ry and Ry are invertible, B is an (rg x ri)-matrix,
and Yy = 0. The drift of the signal is differentiable vector valued function A : z € R™ —
A(x) € R™ with a Jacobian denoted by dA : z € R™ — A(x) e RImxm),
The Extended Kalman-Bucy filter (abbreviated EKF) and the associated stochastic Ric-
cati equation are defined by the evolution equations

(2)

dX, = A(X) dt+ PB Ry [dYt ~ BX, dt] with  Xo = E(Xo),
o,P 0A(X))P, + P, 0A(X,) + R— B,SP, with (R,S):= (Ry,BR;'B).
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In the above display, B’ stands for the transpose of the matrix B.
We associate with these filtering models the conditional nonlinear McKean-Vlasov type
diffusion process

dX; = A(X,E[X, | Gi]) dt+ R)/* dW, + P,,B'R;" [dYt - <BXt dt + RS th)] (3)
with the nonlinear drift function
A(z,m) := A[m] + 0A[m] (z —m).

In the above display (W, Vy, X) stands for independent copies of (Wy, Vi, Xg) (thus inde-
pendent of the signal and the observation path), and P,, stands for the covariance matrix

Py =n[(e —me(e))(e —me(e))] with n:=Law(X; | G;) and e(z):= .

The stochastic process defined in is named the Extended Kalman-Bucy diffusion or sim-
ply the EKF-diffusion. In Section |3| (see Proposition we will see that the G;-conditional
expectation of the states X; and their G;-conditional covariance matrices coincide with the
EKF filter and the Riccati equation presented in .

The Ensemble Extended Kalman-Bucy filter (abbreviated En-EKF) coincides with the
mean field particle interpretation of the nonlinear diffusion process (3]).

To be more precise, let (W;,V;,fé)lgig ~ be N independent copies of (W4, V, Xo). In
this notation, the En-EKF is given by the McKean-Vlasov type interacting diffusion process

dg;’ A(glmy) dt + RYaW, + pyB'Ry " |aYi — (Be dt + By dV;) | (4)

for any 1 < ¢ < N, with the sample mean and the rescaled particle covariance matrix defined
by

L I (R P

1<i<N 1<i<N

with the empirical measures 7;" := ~ Ly <i<N 5 . We also consider the N-particle model
G = (g)lgisN defined as & = (‘St)lgisN by replacmg the sample variance p; by the true
variance P, (in particular we have & = (p).

When B = 0 the En-EKF reduce to N independent copies of the diffusion signal. In the
same vein, for a single particle the covariance matrix is null so that the En-EKF reduces to
a single independent copy of the signal. In the case r{ = 1 we have

E ([m: — X¢|*) = 2 Var(X,) (6)

In these rather elementary situations, the stability property of the signal is crucial to design
some useful uniform estimates w.r.t. the time parameter. The stability of the signal is a
necessary condition to derive uniform estimates for any type of particle filters [11l 12} [13]
w.r.t. the time parameter.

As mentioned in the introduction the En-EKF differs from the more conventional
one defined as above by replacing A(£f, m;) by the signal drift A(£}). In this context the
resulting sample mean will not converge to the EKF but to the filter defined as in by
replacing A(X;) by the conditional expectations E (A(X};) | G;). The convergence analysis of
this particle model is much more involved than the one discussed in this article. The main
difficulty comes from the dependency on the whole conditional distribution of the signal
given the observations. We plan to analyze this class of particle filters in a future study.



1.3 Regularity conditions
1.3.1 Langevin-type signal processes

In the further development of the article we assume that the Jacobian matrix of A satisfies
the following regularity conditions:

—Xoa = Supgepn p(0A(z) + 0A(2)) <0
(7)

[0A(xz) — 0A(y)| < koa |z —y| for some ks < 0.

where p(P) := A\paz(P) stands for the maximal eigenvalue of a symmetric matrix P. In the
above display |0A(z)—0A(y)| stands for the Lo-norm of the matrix operator (0A(x)—0A(y)),
and |z — y| the Euclidean distance between x and y. A Taylor first order expansion shows
that

— (z—y, Ax) — A(y)) < =Aa |z —y[|? with Ay = Aga/2 > 0. (8)

The above rather strong conditions ensure the contraction needed to ensure the stability
of the EFK [I4]. For linear systems A(x) = Az, associated with some matrix A, the
parameters A4 = Apa/2 coincide with the logarithmic norm of A. In this situation we show
n [I3] (section 3.1) that the above condition cannot be relaxed to derive uniform estimates
of the Ensemble Kalman-Bucy filter.

The prototype of signals satisfying these conditions are multidimensional diffusions with
drift functions (A4, 0A) = (—0V, —0?V) associated with a gradient Lipschitz strongly convex
confining potential V : z € R™ — V(x) € [0,0[. The logarithmic norm condition (7)) is met
as soon as 02V = v Id with v = 2|\s4|. Equivalently the smallest eigenvalue Apin(02V(x))
of the Hessian is uniformly lower bounded by v. In this case is met with Apq = v/2.

These conditions are fairly standard in the stability theory of nonlinear diffusions, we
refer the reader to the review article [30], and the references therein. Choosing Ry = o7 Id
and A = —p0V, for some 3,01 = 0 the signal process X; resumes to a multidimensional
Langevin-diffusion

dXy = —p &’V(Xt) dt + o1 dW; (9)

This process is reversible w.r.t. the invariant distribution. Let p be a probability distribution
on R™ given by
1 2 2
pa(dr) = — exp (gV(@) dr with Zg= J exp <§V(ZE)> dx €]0, o0f.
Zs 07 o7
In the above display dx stands for the Lebesgue measure on R™. The Lipschitz-continuity
condition of the Hessian 0%V introduced in ensures the continuity of the stochastic

Riccati equation (2) w.r.t. the fluctuations around the random states Xt We illustrate this
condition with a nonlinear example given by the function

V(z) = % (Q1x,x) +{q,z) + % (Qox, x)*?

with some symmetric positive definite matrices (Qj, Q2) and some given vector ¢ € R™. In
this case we have

V() = q+ Qux+{(Qox,z)'/? Qo
V() = Q1+ <Q2x,az>1/2 Qs + <QQx,:1:>_1/2 Qsz2’ Qs.



In this situation we have
[0*V(z) — 2V (y)| <2 |Qaf*? |1y — x]. (10)

This shows that conditions @ are met with the parameters

(Monskion) = B (27 Amin(Q1), 2X312,(Q2)) -

A proof of is provided in [14], section 6. More generally these regularity conditions also
hold if we replace in @D the parameter o1 by any choice of covariance matrice Ry. Also
observe that the Langevin diffusion associated with the null form Q = 0 coincides with the
conventional linear-Gaussian filtering problem discussed in [I3]. Stochastic gradient-flow
diffusions of the form @ arise in a variety of application domains. In mathematical finance
and mean field game theory [6l, [19] these Langevin models describe the interacting-collective
behaviour of ri-individuals. For instance in the Langevin model discussed in [19] the state
variables X; = (Xg)1 <i<r, Tepresent the log-monetary reserves of r; banks lending and
borrowing to each other. The quadratic potential function is given by

(Qiz,z)y = )] (mil > xj>2=> Q1><1:1> I,.

; T .
1<i<nr 1 1<j<n

In this context, the parameter 8 represents the mean-reversion rate between banks. More
general interacting potential functions can be considered. Mean field type diffusion processes
are also used to design low-representation of fluid flow velocity fields. These vortex-type
particle filtering problems are developed in some details in the pionnering articles by E.
Mémin and his co-authors [7, [8, 10, B3]. These probabilistic interpretations of the 2d-
incompressible Navier-Stokes equation represent the vorticity map as a mixture of basis
functions centered around each vortex.

In this connexion, we mention that our approach also applies to interacting diffusion
gradient flows described by a potential function of the form

V)= > Ui(z)+ >, Us(wi ;)

1<i<ry 1$i:f:j$7"1

for some gradient Lipschitz strongly convex confining potential U; : R® + [0,00[, i = 1,2.
In this situation, we have

U, = uy and Uy = ug Iy = 0°V >0 I, with v:=(u1 + (r1 —ug) >0 (11)

We further assume that
0% (21) — U (Y1) < Koz, |71 — 22,
|0%Us (1, x2) — OUa(y1,92) | < Kergy |1, 22) — (91, 2).-

In this case, we have

12V(@) — 2V(y)| < mgoy o — gl with mony = sy, + omgg, (11 — 1) /201 — 1), (12)
This shows that conditions @ are met with

(Noaskoa) = B (27w + (r = Duz), woug, + o, (11— 1) /2(m — 1))

The detailed proofs of (11])-(12) are provided in [14], section 6.



1.3.2 Observability conditions

To introduce our observability conditions we give a brief introduction to the class of ob-
servation processes discussed in this article. When the observation variables are the same
as the ones of the signal, the signal observation has the same dimension as the signal and
resumes to some equation of the form

dY; = b Xy dt + o9 dV; (13)

for some parameters b € R and o3 > 0. These sensors are used in data grid-type assimilation
problems when measurements can be evaluated at each cell. These fully observed models
are discussed in Section 4 in [24] in the context of the Lorentz-96 filtering problems. These
observation processes are also used in the article [4] for application to nonlinear and multi-
scale filtering problem. In this context, the observed variables represent the slow components
of the signal. When the fast components are represented by some Brownian motion with
a prescribed covariance matrix, the filtering of the slow components with full observations
take the form .

For partially observed signals we cannot expect any stability properties of the EKF and
the En-EKF without introducing some structural conditions of observability and control-
lability on the signal-observation equation . To get one step further in our discussion,
observe that the EKF equation implies that

~

Ad(X, — X,) = [(A(Xt) — A(X})) — PS(X, — Xt)] dt + P, C'Ry Y% av, + RY? aw,  (14)

This equation shows that the stability properties of this process depends on the nature
of the real eigenvalues of the symmetric matrices (A(z) — P;S)sym, with z € R™. In contrast
with the conventional Kalman-Bucy filter, the Riccati equation is a stochastic equation.

In this connection, we already mention that the sample covariance matrices p; of the En-
EKF also satisfy a stochastic Riccati type equation of the same form, up to some fluctuation
martingale (see for instance in Theorem in the present article). In the same vein,
we shall see in that the En-EKF sample mean m; evolution satisfies the same equation
as the EKF, up to some fluctuation martingales coming from the fluctuations of the sample-
covariance matrices and the ones of the sample-particles.

As a result, the stability properties of the EKF and the En-EKF are not induced by
some kind of observability condition that ensure the existence of a steady state deterministic
covariance matrix. The random fluctuations of the matrices 8A()A(t) and 0A(m;) as well as
the fluctuations of the stochastic matrices (A(m¢) — p¢S)sym may corrupt the stability in
the EKF and the En-EKF, even if the linearized filtering problem around some chosen state
is observable and controllable. For instance the empirical covariance matrices may not be
invertible for small sample sizes. For a more thorough discussion on the stability properties
of Kalman-Bucy filters, the EKF and Riccati equations we refer the reader to [13| [14], and
the references therein.

As shown in the system above, these fluctuations enter in two different ways in the En-
EKF. The first one in the drift function of the system, the other one through the diffusive
part.

Therefore the fluctuations of the empirical covariances from small sample sizes corrupt
the natural stabilizing effect of the observation process in the EKF filter evolution. In



practice it has been observed that these fluctuations induce an underestimation of the true
error covariances. As a result the En-EKF eventually ignores the information given by the
observations. This lack of observation-driven component also leads to the divergence of the
filter.

Last but not least, from another numerical viewpoint, the En-EKF is also know to be
not robust, in the sense that arithmetic errors may accumulate even if the exact filter is
stable.

All of these instability properties of the EnKF are well-known and often referred as the
catastrophic filter divergence in data assimilation literature, see for instance [20, 22, 28], and
the references therein. As mentioned by the authors in [22], ” catastrophic filter divergence
is a well-documented but mechanistically mysterious phenomenon whereby ensemble-state
estimates explode to machine infinity despite the true state remaining in a bounded region”.
In all the situations discussed above the instability properties of Ensemble Kalman-Bucy
type filters are related to some observability problem.

The stability analysis of diffusion processes is always much more documented than the
ones on their possible divergence. For instance, in contrast with conventional Kalman-Bucy
filters, the stability properties of the EnKF are not induced by some kind of observability or
controllability condition. The only known results for discrete generation EnKF is the recent
work by X. T. Tong, A. J. Majda and D. Kelly [36]. One of the main assumptions of the
article is that the sensor-matrix has full rank. The authors also provide a concrete numerical
example of filtering problem with sparse observations for which the EnKF experiences a
catastrophic divergence. These divergence properties have been analysis in some details in
the article [I3] in the context of linear-Gaussian filtering problems. The full rank observation
assumption avoids the EnKF to experience local or global exponential instabilities.

To quantify and control uniformly in time the propagations of these instabilities we need
to introduce some strong observability condition that ensure that the system is globally
and locally stable. In the further development of the article we assume that the following
condition is satisfied:

(S) S =p(S) Id for some p(S) > 0. (15)

The fully observed model discussed in clearly satisfies condition with the pa-
rameter p(S) = (b/o3)?.  Condition ensures that the particle EnKF has uniformly
bounded L,-moments for any n > 1. In the context of linear-Gaussian filtering problems,
this condition is also essential to ensure the uniform convergence of Ensemble Kalman-Bucy
filter w.r.t. the time parameter [13]. This article also provides a geometric description of the
divergence regions in the set of positive covariance matrices for elementary 2-dimensional
observable and controllable systems. When condition (S) is not met, we design stochastic
observers driven by these matrices that diverge when the signal drift matrix is unstable (see
Section 4 in [13]). (see Section 4 in [13]).

From the pure mathematical viewpoint the observability condition (S) allows to combine
exponential semigroup techniques with spectral analysis and log-norm inequalities. To get
some intuition and to better connect this work with [13] we give some brief comments on
these spectral techniques:

For 2-dimensional linear signals A(z) = Az, the existence and the uniqueness of the
steady state P of the Riccati equation is ensured by some appropriate observability
and controllability conditions. In this context we have u(A — PS) < 0 even for unstable



signal-drift matrices. This condition ensures the stability of the steady state filter.

Starting from the steady state Py = P the EnKF filter is driven by stochastic matrices
pe that converge to P, as the size N of the ensemble tends to 0. The stability analysis of
the EnKF filter now depends on the sign of the log-norms t — u(A — p.S) of the stochastic
matrices. The fluctuations of p; around P are defined by the matrices

Qtzz\/]v(pt—P)eSm(=>pt=P+\/1NQtES;r1 (16)
Under condition (S) we have u(A) < 0= u(A—pS) = p((A—PS) —Q.S) < u(A) <0 for
any fluctuation matrices ;. When (S) is not met the local divergence domain of matrices
Q¢ such that pu(A—pS) = u((A—PS) —QS) > 0 may be very large, even when pu(A) < 0.
The refined analysis on the stability of these models requires to analyze in some details the
random excursion of the matrices into these local divergence domains. For a more thorough
discussion on these local and global divergence issues in the context of linear systems we
refer the reader to section 4 in the article [13].
Last but not least, we mention that is satisfied when the filtering problem is similar
to the ones discussed above; that is, up to a change of basis functions. More precisely,
any filtering problem 1) with 7 = rp and s.t. (R, Y 2B) is invertible can be turned into a

filtering problem equipped with an identity sensor matrix; even when the original matrix
S = C'Ry'C = C'C does not satisfy . To check this claim we observe that

dX, = AX) dt+RY?aw,
4y, = X, dt+dV,

Vo= RyY*Y, and X, :=R,"’BX; — {

with the drift function
A:=(Ry,"?B)o Ao (R;Y*B)™" and the matrix Ry := R, "*BRiB'R;"*.
In this situation the filtering model (X}, );) satisfies . In addition, we have
—1/2 1 —1/2 2
A= (R, ""B) " odUo (R, '"B)= (A,dA) = (0U,0°U).
In this situation the filtering model (X}, );) satisfies and the signal process X; belongs
to the class of Langevin type diffusion discussed in Section [1.3.1]
2 Statement of the main results

2.1 Concentration inequalities

One of our results concerns the stability properties of the EKF-diffusion . It is no surprise
that these properties strongly depend on logarithmic norm of the drift function A as well as
on the size of covariance matrices of the signal-observation diffusion. For instance, we have
the uniform moment estimate

Aoa>0=95>1 sup {E[\\thé] v tr(B) v E[| X, — f(tuﬁ]} <ec. (17)
=
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A detailed proof of these stochastic stability properties including exponential concentration
inequalities can be found in [I4]. Observe that tr(P;) is random so that the above inequality
provides an almost sure estimate. To be more precise we use to check that

Oitr (Py) < —Xoa tr (Py) + tr(R) = tr(P) < e 4! tr (Py) + tr(R)/Aoa. (18)

The detailed proof of can be found on page
To get one step further in our discussion, we consider the following ratio

A A A
oA : 4 and AK = oA
p(S)

B tr(R) KoA
Roughly speaking, the three quantities presented above measure the relative stability index
of the signal drift with respect to the perturbation degree of the sensor, the one of the
signal, and the modulus of continuity of the Jacobian entering into the Riccati equation.
For instance, Ag is high for sensors with large perturbations, inversely Ag is large for signals
with small perturbations. Most of our analysis relies on the behaviour of the following

Ag =

quantities:

92 —1
Ars = (8e) ' ArpA/As |1+
’ ARAS

R RCEERIE s

In the quadratic Langevin-signal filtering problem discussed in @ and with b =
1 = 3 these parameters resume to

1
o3 v, Api=——o0;2v and Ak := (19)

Ag = =
o 211

N

In this situation we have

oafdea = 4t (1—2\@ ! >[1—3ﬁ ! }

1
5 2 02\/5 40’2\/5

Notice that these parameters do not depend on the dimension of the signal, nor on the
diffusion parameter o;.

In addition, we have /A\a A/Aoa > 0 for any choice of parameters (v, o9).

To better connect these quantities with the stochastic stability of the EKF diffusion
we discuss some exponential concentration inequalities that can be easily derived from our
analysis. These concentration inequalities are of course more accurate than any type of
mean square error estimate. Let )’(\'t(m, p) be the solution of the EKF equation starting
at ()A(O,PO) = (m,p), and let X;(x) be the state of the signal starting at Xo(z) = x. Let
w(d) be the function

62

5 € [0, 00— w(8) := B+ <5+\/5)].

In this notation, we have the following exponential concentration inequalities.

11



Theorem 2.1. For any time horizon t € [0,0[, and any § = 0 the probabilities of the
following events

N 1
| Xi(z) = Xi(m,p) | < 20 @) VAs/AR,s
|e—/\At _ e—)\gAt|
[Aa/Aoa — 1|

+2 g Roat |z — mH2 + 8 w(d) tr(p)z/AS

and

1 @w(8) v/ As/Ars + 8 w(8) e 4t tr(p)?/Ag

Hft(mm)—)?t(m,p)HZ < %

are greater than 1 — e 9.

The proof of the first assertion is a consequence of [14, Theorem 1.1], the proof of
the second one is a consequence of the Ls-mean error estimate (32). These concentration
inequalities show that the quantity

1 2
A/ )\S/)\R,S = 8e Ag [1 + ]

ARAS ARAS

can be interpreted as the size of a confidence interval around the values of the true signal,
as soon as the time horizon is large. It is also notable that the same quantity controls the
fluctuations of the EKF diffusion around the values of the EKF. These confidence intervals
are small for stable signals with small perturbations. In the quadratic Langevin-signal
filtering problem discussed in @ and with b = 1 = 3 the above quantity resumes to

1 2
\/)\S/AR7S:246 -7 U% [1+827’1 <0-1> ]
(Y v

02

For unit signal-to-noise ratio o1 = o9 these fluctuation parameters are small for stable
signals with small perturbations. The above formula also indicate the degradation of the
fluctuation parameter when the size of the system is large.

2.2 A stability theorem

We further assume that
(AKAR/4) A Ars A (As/4) > 1. (20)

This regularity property is a purely technical condition. The condition (AxAr/4) A (As/4)
ensures that 0 < Aga < Apa, while Ag g > 1 is used to derive L)-mean error estimates with
some parameter p > 1 that depends on Ag g.

The condition is clearly met as soon as Ag and Ag are sufficiently large. As we shall
see the quantity Ap4 represents the Lyapunov stability exponent of the EKF. This exponent
is decomposed into two parts. The first one represents the relative contribution of the signal
perturbations, the second one is related to the sensor perturbations.

In contrast with the linear-Gaussian case discussed in [13], the stochastic Riccati equa-
tion ([2)) depends on the states of the EKF. As shown in [14] the stability of the EKF relies
on a stochastic Lyapunov exponent that depends on the random trajectories of the filter as

12



well as on the signal-observation processes. The technical condition allows to control
uniformly the fluctuations of these stochastic exponents with respect to the time horizon.
A more detailed discussion on the regularity condition , including a series of suffi-
cient conditions are provided in the appendix, Section [6.1] For filtering problems with an
observation process of the form with p(S) = (b/o2)? = 1 we have
1 A2
8etr(R) A2, + 2tr(R)’

As =Xdoa = Apg:=

In this situation (20]) is met as soon as the following easy to check condition is satisfied

A2 1 1
A 4 and tr(R)< 24 A1+ ———1] . 21
oA >4 an r(R) 5 {2/&@,4 /\[ +4e o ]} (21)

A detailed proof of this assertion is provided in the end of Section In the quadratic
Langevin-signal filtering problem discussed in @D and with b = o9, condition

resumes to

v/8>1 and 2v2erio} < (v/8)

These conditions are clearly much stronger than the ones discussed in [13] in the context
of linear-Gaussian filtering problems. For the same type of filtering problem, exponential
stability and uniform propagations of chaos for the EnKF hold as soon as v > 0.

Let (X¢, Z;) be a couple of EKF Diffusions starting from two random states with
mean ()A(O, Xo) and covariances matrices (Py, Py) (and driven by the same Brownian motions
(W4, VQ) 9ne key feature of these nonlinear diffusions is that the G;-conditional expecta-
tions (X¢, X;) and the Gi;-conditional covariance matrices (P;, P;) satisfy the EKF and the
stochastic Ricatti equations discussed in .

Whenever condition is satisfied we recall from [14] that for any € €]0, 1] there exists
some time horizon s such that for any ¢t > s we have the almost sure contraction estimate

2/8s

E(I(Xe P) = (Ke P 1G,) " < 2 exp|— (1= ) Roalt = 5)| [(Xes ) = (X, )P

with dg := 271 /Ag, and some random process Z; satisfying the uniform moment condition

supE (Zta) <o with a=2Apg ds. (22)

t=0

These conditional contraction estimates can be used to quantify the stability properties of
the EKF. More precisely, if we set

Pt = Law()?t, Pt) and ]\I/Dt = LaW(Xt, -?t)

then the above contraction inequality combined with the uniform estimates readily
implies that

V=t WIL(PLEB) <c exp [—t (1—e) XaA]

for any € € [0,1], with some time horizon to. This stability property ensures that the
EKF forgets exponentially fast any erroneous initial condition. Of course these forgetting

13



properties of the EKF do not give any information at the level of the process. One of
the main objective of the article is to complement these conditional expectation stability
properties at the level of the McKean-Vlasov type nonlinear EKF-diffusion .

Our second main result can basically be stated as follows.

Theorem 2.2. Let (7;,7;) be the probability distributions of a couple (X, Z;) of EKF
Diffusions (@ starting from two possibly different random states. Assume condition (@) is
met with 0y := d6g/4 = 2. In this situation, for any € € [0, 1] there exists some time horizon
to such that for any t = tg we have

W3, (M, 71) < c exp[—t (1—€) A] with A= Xoa A (Aaa/4). (23)

2.3 A uniform propagation of chaos theorem

Our next objective is to analyze the long-time behaviour of the mean field type En-EKF
model discussed in . From the practical estimation point of view, only the sample mean
and the sample covariance matrices are of interest since these quantities converge to the
EKF and the Riccati equations, as N tends to c0. Another important problem is to quantify
the bias of the mean field particle approximation scheme. These properties are related to
the propagation of chaos properties of the mean field particle model. They are expressed in
terms of the collection of probability distributions

PY = Law(m, p), QY =Law(§) and Q= Law((}).

Theorem 2.3. Assume that @) is met with 0p s := (eAr,s) A 0s = 2. In this situation,
there exists some Ny = 1 and some 8 €]0,1/2] such that for any N = Ny, we have the
uniform non asymptotic estimates

As 1_’_ 1
2 ARpAsg

tI‘(PQ)2 <

<2 ] —  supWs, . (PY,P) <cN P (24)
AR >0 :

In addition, when 6r s > 4 we have the uniform propagation of chaos estimate

sup W (Q7, Q) < eN~7. (25)

=0
Our analysis does not provide an explicit formula for the rate of convergence 8. We

conjecture that the optimal rate is f = 1/2 as in the linear-Gaussian case developed in [13].
For the quadratic Langevin-signal filtering model discussed in @ and withb=1=

B, by the 1L.h.s. condition in resumes to

Ao [1 1 1 N2 [o1\?
2 A5 |2 _ 2|2 2 o1
tr(PO) < pye [2 + )\R/\S] 71 (0'10'2) [2 + 7 <’U> (0_2> ] .

We end this section with some comments on our regularity conditions.

The condition is needed to control the fluctuations of the trace of the sample
covariance matrices of the En-EKF, even if the trace expectation is uniformly stable. We
believe that this technical observability condition can be relaxed.

14



Despite our efforts, our regularity conditions are stronger than the ones discussed in [13]
in the context of linear-Gaussian filtering problems. The main difference here is that the sig-
nal stability is required to compensate the possible instabilities created by highly informative
sensors when we initialize the filter with wrong conditions.

Next we comment the trace condition in . As we mentioned earlier, the stability
properties of the limiting EKF-diffusion are expressed in terms of a stochastic Lyapunov
exponent that depends on the trajectories of the signal process. The propagation of chaos
properties of the mean field particle approximation depend on the long-time behaviour
of these stochastic Lyapunov exponents. Our analysis is based on a refined analysis of
Laplace transformations associated with quadratic type stochastic exponents. The existence
of these x-square type Laplace transforms requires some regularity on the signal process.
For instance at the origin we have

(tr(Py) <) r1p(Py) < 1/(48) — E (exp [5|\X0 - )20\\2]) <e. (26)

The proof of and more refined estimates can be found in [14].

From the numerical viewpoint the trace condition in is related to the initial location
of the particles and the signal-observation perturbations. Signals with a large diffusion part
are more likely to correct an erroneous initialization. In the same vein, the estimation
problems associated with sensors corrupted by large perturbations are less sensitive to the
initialization of the filter. In the reverse angle, when the signal is almost deterministic and
the sensor is highly informative the particles need to be initialized close to the true value of
the signal.

To better connect our work with existing literature we end our discussion with some
connection with the variance inflation technique introduced by J.L. Anderson in [I} 2] [3]
and further developed by D.T. B. Kelly, K.J. Law, A. M. Stuart [2I] and by X. T. Tong,
A. J. Majda and D. Kelly [36]. In discrete time settings this technique amounts of adding
an extra positive matrix in the Riccati updating step. This strategy allows to control the
fluctuations of the sample covariance matrices. In continuous time settings, this technique
amounts of changing the covariance matrix P,, in the EKF diffusion by Py, + 6 Id for
some tuning parameter § > 0. The resulting EKF-diffusion (3| is given by the equation

iX, = (A(XLE[X,|G])—0SX,) dt+P,BRy" [dYt - (BE dt + RS> th)]
+|RY? aW, — 0 B'R; V| + 0 B'R;* dv;.

The stabilizing effects of the variance inflation technique are clear. The last term in the r.h.s.
of the above displayed formula has no effect (by simple coupling) on the stability properties
of the diffusion. The form of the drift also indicates that we increase the Lyapunov exponent
by an additional factor 6 (as soon as p(S) > 0). In addition we increase the noise of the
diffusion by a factor 62, in the sense that the covariance matrix of the perturbation term
R}/ 2 dW,— 0 B'R, Y 2th is given by Ry + 6%25. We believe that the stability analysis of
these regularized models is simplified by these additional regularity properties. This class
of regularized nonlinear diffusions can probably be studied quite easily using the stochastic
analysis developed in this article. We plan to develop this analysis in a forthcoming study.
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3 Some preliminary results

This short section presents a couple of pivotal results. The first one ensures that the Ex-
tended Kalman-Bucy filter coincides with the G;-conditional expectations of the nonlinear
diffusion X;. The second result shows that the stochastic processes (my,p;) satisfy the

same equation as ()A(t, Pt>, up to some local fluctuation orthogonal martingales with angle
brackets that only depend on the sample covariance matrix p;.

Proposition 3.1. We have the equivalence
E(Xo) = Xo and Py =Py Vt=0 EX;|G)=X; and P, = P.
Proof. Taking the G;-conditional expectations in we find the diffusion equation
E(X; | G) = AE(X, | G)) dt + P,,B'Ry" [dY; — B E(X; | G)dt].
Equivalently, if we set E(X; | G;) = X, then we find that

A% = A(Xy) dt+ P, B'R; |dYi - B Xy dt|.

Let us compute the evolution of P,,. We set )N(t =X, —EX;| G) = X; — )A(t. In this
notation we have

dX, = O0AE(X;|G)) X, dt + RY/* dW, - P,,B'R;" [BXtdtJrRm

th]
— [PAE(X; | G)) - P,,S] X dt + R)* dW,—P,B'R,"* dV,.
This implies that
~ o~ ~ ~ o~ ~ o~ ~ /
dX.X) = {[aA(Xt)—PtS] XX at + XX [0A(R) - RS | +(R+7?mS7?m)} dt
+ [R}/Q dW, — P, B'R; th] X+ X [R}/Q dW, — Py, B'Ry th] .
Taking the G;-conditional expectations we conclude that
~ ~ /
0Py = |0AR) = PuS| Poydt + Py, [HKe) = PyS| + (R + Py SPy)
— 0A(X))Py, + PpoA(X:) + R—P,,SP,,.

This ends the proof of the proposition. |

Theorem 3.2 (Fluctuation theorem [13]). The stochastic processes (my,p) defined in ()
satisfy the diffusion equations

dmy = A [mt] dt + py B/R2_1 (dYVt — Bmy dt) + dﬂt (27)

1
VN
with the vector-valued martingale M; = (Mt(k))lgksm with the angle-brackets

Ou(My(k), My(K'))e = R(k, k') + (piSpe) (k, K). (28)
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We also have the matriz-valued diffusion

dpt = (8A [mt] pr + ptﬁA [mt]/ — ptSpt + R) dt + th (29)

1
VN —1
with a symmetric matriz-valued martingale My = (My(k,1)) <y, 1<,, and the angle brackets

Ot <M(k, ), M(k', l,)>t = (R+pSpt) (k,K') pe(L,1') + (R + peSpe) (1, 1) pe(k, k')

+ (R + ptSpt) (l/, ki) pt(k', l) + (R + ptSpt) (l, k/) pt(k}, l/)

(30)
In addition we have the orthogonality properties
(M (k, 1), M), = (M(k,1),V(K)), = (M), V(K)),=0
forany 1 < k,1,I' <7y and any 1 < K < rs.
Proof. We have
d(& —mi) = [0A (my) — peB'S] (& — my)dt + dM]
with the martingale
i 12 [ 5 1 —j 12 1 —
dM; = Ry (th -5 Z dW§> — pB'RyY (dvt -5 Z dVi) .
1<j<N I<j<N
Notice that )
AT = (1= ) (R + i) (5.8
and for ¢ % j
A A 1
(M (), MY (K'))e = =7 (R + peSpe) (k, k).
The end of the proof follows the proof of [I3] Theorem 1], thus it is skipped. This ends the
proof of the theorem. m

4 Stability properties

This section is dedicated to the long-time behaviour of the EKF-diffusion , mainly with
the proof of Theorem We use the stochastic differential inequality calculus developed
in [I3, [14]. Let )} be some nonnegative process defined on some probability space (€2, F,P)
equipped with a filtration F = (F;)s>0 of o-fields. Also let (Z;, Z;) be some processes and
M be some continuous F-martingale. We use the following definition

dVe < ZF dt + dMy = (dYy = Z; dt + dM; with Z, < Z[). (31)

We recall some useful algebraic properties of the above stochastic inequalities.
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Let (D¢, Z:r , Z¢, M;) be another collection of processes satisfying the above inequalities,
and (a, @) a couple of nonnegative parameters. In this case it is readily checked that

daV+ady) < (o Z +aZ,)dt+dla M, +a M)

and

AW s) < [zzryt + ZV + at<M7m>t] dt + Vi dMy + Vi dM.

We consider a couple of diffusions (Xy, Z;) coupled with the same Brownian motions
(V, W) and the same observation process Y, and we set

Fi =Gy v J((Y3373)7 ES t) .

Next proposition provides uniform estimates of the Lgs-centered moments of the EKF-
diffusion with respect to the time horizon.

Proposition 4.1. Assume that A\pa > 0. In this situation, for any § = 1 and any time
horizon s = 0 we have the uniform almost sure estimates

_ ~ 2/5 _ ~
E (% - Kl | 7o) < el X, - %2

+(26 — 1) [A;;u +2 (rg) ™Y + 26"\“(”3)tr(P0)2)\§1] .
Proof. We have
d(X, - X;) = [aA(f(t) - PtS] (X, — X)) dt + RV*dW,— P,B'R;"? dV,
This implies that
d|X: — X2

— [2@ ~ X, [aA(f(t) - PtS] (X — X))+ tr(Ry) + tr(PtQS)] dt + dM,

< [ 1K = Rl + 4] dt + ang,
with the process

Uy = tr(R) + tr(P2S) < tr(R) + p(S)tr(P;)?
< tx(B) + p(S) (7" (P + 1/5)
and the martingale
dM, == 22X, — X, RY? dW, — P,B'R;"* dV}).
Observe that the angle bracket of this martingale satisfies the property

oMY = KX, — X, (R+PSP) (X — X)) <4|X:— X|? |R + P,SP.
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By [14, Corollary 2.2] for any § > 1 we have

_ ~ 2/6 _ ~
E(I% - R | F) < exp(—Aaalt — ) [ X — £

(26— 1)j exp (“Aoalt —u) (6c(R) + p(S)tr(Pu)?) du.

s

Observe that by

p5) [ exp (SAoat =) u(P)? du

S

< 2p(9) f exp (—Aaa(t — u)) [e—%A" tr(Py)? + 1/A§] du

< 2(AFAs) Tt + 2exp (—Aaalt + 8))tr(Py)*Agh

This ends the proof of the proposition. |

Theorem 4.2. When the initial random states Xo and Zo have the same first and second
order statistics, that is when (Xo,Py) = (Xo,Py), we have the almost sure contraction
estimates:

| Xt — Zi|* < exp [-Aaat] [Xo = Zol>.

More generally, when condition (@) is met with \g = 4%, for any e € [0, 1] there exists some
s such that for any t = s and any 1 < § < 47% \/Ag we have

E(X, - Z)% | 7)) <esp[-(1 - Moat—9)] [~ Z*+ 2] (33)

with some exponent Apa = 3\3,4 A (M\oa/2), and some process Z; satisfying the uniform
moment condition

sup E (??/4> < forany o <Ars\As. (34)

t=0

Before getting into the details of the proof of this theorem we mention that is a
direct consequence of combined with the uniform estimates . Indeed, applying ,
for any § > 2 we have

. N\1/5 _ 1/ _ 911/5
E(IX = Zi") " < exp[~(1 = e)hoalt - 5)/2] (E X, -Z,)°| " +E|Z."] > .
Using and the fact that
1<6/2<167 Vs <47 Ars Vs

we conclude that
Wi (e, 7ie) < ¢ exp [t (1—€)(1—s/t)haa/2] < ¢ exp[~t (1 —2¢)Aaa/2]
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as soon as s/t < e. The end of the proof of is now clear.
Now we come to the proof of the theorem.
Proof of Theorem [4.2}
We have

iX, = A(X;,X,)dt + RY* dW,+ P,B'R;" [dYt - (BYtdt + RY? th)] .
Using the decomposition
P.SZ,— PSX, = —-PS(X;—Z,)+ (B —P)SZ,
we readily check that
(X~ 7,)
- {[A(Yt, X)) - A(Z,, )“(t)] ~ PS(X, - Z)} dt + [Pt — é] S(X, — Zy) dt + dM,
with the martingale

dM; = [Pt - E] B'Ry Y2 d(v, - V)

- _ 12 -~
= WMy = | [Pt _ Pt] B'RyY|% = tr ([Pt _ Pt] S) <V = p(S) | P — B2

When the initial random states Xy and Z, are possibly different but they have the same
first and second order statistics we have

X():XO and POZP() = Vt=0 th)\ft and Pt:]\st_
In this particular situation we have
AX e, Xp) — A(Zy, Xi) = 0A(Xy) (Xy — Zy)

and o (Yt —Zt) _ [ﬁA()\ét) — PtS] (yt —Zt).

This implies that
X = Zil* = 2(Xi — Z0), |0AK) = BS| (Ko = Z0)) < —doa |X = Zul?

This ends the proof of the first assertion.
More generally, we have

AX, X)) — A(Z, X))
— 0A(Xy) (Xy— Zy)
AR - AX)| - 0A(X) (R - X) + [04(R) - 04(X))| (K- )
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This yields the estimate

X, —Z,, (A(Yt, X)) — A(Z,, )?t)) ~PS(X,— 7))

A — _ . _ ~ -~ — ~
< =22 X = Zol? + (Ko = Zi [ 0A(R) — 0ACR) | (Ko = R
+(Xi = Zi | AR) - AKD)| - 04K (R - X))
Aaa — N o~ A
<=2 X = ZoP + 1R = Xall 1K = Zal (on 1K = Rell + roa + oA

We also have
Xy~ Z0 | P~ B[ S(X0 = Z0) < | = Bilp X0~ Z4) 1S(X: - Z0)]
This implies that
d| X — Z4[?

< [—roa K = Zil? +2 | X0 = Kol 1K: = Zil (woa 1K — Rill + moa + 041 | dt

+ 218 = Bllr 1% - Zil 150~ Z0)l| dt + 2395 |X, — Zi] dM,

with
Vi = p(9) |P — P F
and a rescaled continuous martingale M; such that 9;(M); < 1. On the other hand, we

have o B R - o R
21X = Zul IR - Xl (oa 1K — Rill + woa + 104]))

AoA

— _ 4 A ~ _ ~ 2
< 2K = Zil2 + 1R = Kl (oa [ = Kl + roa + [04])
4 AoA

and _ - o
2|P, — Py | Xt — Z¢| |S(Xe — Z4)|

4
AoA

A
o foa

< X — Z4)? + |P,— B3 |S(X: — Zy)|*.

We conclude that
_ _ A _ _ _ _ _
AT =T < |22 (X =2+t a4 2V (K= 22

with
Us = | X — Xil* + Bi | Py — B3

and the parameters

4 SN 2 4 A
o= 5 (hoa [Ke = Rill + o +1041)" and By = < [S(X, ~ Z)|”.
AoA AoA
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By and , for any 6 < 27'4/Ag and any t > s we have

4/6 2/5

< E(J1% - %) | fs)w E(a” | 7.)

< Z e (-Raall -t - )

6/4 1 G o
E (o | = X2 | 7)

for some process Z, satisfying the uniform moment condition 1) In the same vein we
check that

4/5 a5 ~
E (uf/4 | }“S> VE (vf/“ | }“s> <Z, exp (—/\aA(l Ot — s))
for any s > to. By [14, Corollary 2.2] we have

E (Hyt _ ZtHé/zL ‘ ]_—8)8/6

<o (-]t 0)]) I - 21

+nZ, f exp (- [)\3’4(t—u) +Aoa(l—e)(u— S)D du

<) X, TR+ — n Zy, o= (1-9) _ g=Roa(1-e)(t=s)|
Aoa(l—e€) — Xoa/2|
The end of the proof of the theorem is now easily completed. |

5 Quantitative propagation of chaos estimates

5.1 Laplace exponential moment estimates

The analysis of EKF filters and their particle interpretation is mainly based on the estimation
of the stochastic exponential function

En(t) = exp [ J Tals) ds]

0
with the stochastic functional

FA(S) = — [)xaA — (2I<LaA tI‘(Pt) + p(S) HXt — Xt” )] .
Assume condition is satisfied and set

2 1 /3 1 A
A 0/ dgi=1———+—|(-=0)—= .
oale 01 /aa MAr s (4 ) 5 2hon

Observe that for any § > 0 we have
1 A ~
€= 3 % = Aja [6,\/)\5’/2] = Xoa = Noa[e,9].
A
The next technical lemma provides some key d-exponential moments estimates. Its proof
is quite technical, thus it is housed in the appendix, Section
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Lemma 5.1. e For any é >0 and any 0 < s <t we have the almost sure estimate

E ((5p(t)/€p(s))_6 | fs)w <exp (Ap (t—s)) with Ap = Xoa {1 - )\KQ)\R]'

(35)

e Foranyee[0,1], any 0 < < e € Aps and any initial covariance matriz Py such that

As [ 1 1
tr(Py)? < 0?(e,6) := i [2 + ARAS] (e eAps/0 —1)

for any time horizon t = 0 we have the exponential -moment estimate

E [e}(t)é]l/ " < o5(Py) exp [Af (e, 6) 1] (36)
with the parameters
A{(e,0) = 2kpa0(e,0) —Apale, 6] — (6 — 1) p(S)
cs(Po) = exp (1/6 4 0x(Po)/(2As)?).

e For any € €]0,1] there exists some time horizon s such that for any t = s and any
d < V/Ag/2 we have the almost sure estimate

1/5 ~
E (et | 7o) <&n(s) 2o exp(—{(1=Roa+ 6-1p(S)} (t=5))  (37)
for some positive random process Z; s.t.

Va < Ap,s V/ As Sup]E(Zf‘) < 0

t=0

5.2 A non asymptotic convergence theorem
This section is mainly concerned with the estimation of the §-moments of the square errors
Er = [ (me, pe) — (Ko, P|® = e — Xl + e — Pl B

The analysis is based on a couple of technical lemmas.
The first one provides uniform moments estimates with respect to the time parameter.

Lemma 5.2. There exists some v > 0 such that for any 1 < n <1+ vN we have
supE (tr(py)"™) < o0 supE (|&}") <o and supE (|¢]") < .
=0 =0 =0
The second technical lemma provides a differential perturbation inequality in terms of
the Laplace functionals discussed in Section [5.1

Lemma 5.3. We have the stochastic differential inequality

=, < = [FA(t) +/2p(5) drgn] + [Vt dt +/V, =, dT@]
with a couple of orthogonal martingales s.t. 8t<T.(i),T.(j)>t < 1i—; and some nonnegative
process Vi such that
supE (VY™ < e(n)/N  for any1 <n <1+ vN and some v > 0.
t=0
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The proofs of these two lemmas are rather technical thus they are provided in the
appendix, Section and Section We are now in position to state and to prove the
main result of this section.

Theorem 5.4. Assume that (2714/Ag) A (eArs) = 2. In this situation, there exist some
No = 1 and some « €]0,1] such that for any No < N, 1 <6 < (47 Ag) A (27 edrs) and
any initial covariance matrix Py of the signal we have the umform estimates

1 )\S 2 1/8
P 1 E /4 < ¢/N©.
tr(Pp)? < 5 )\R{ +ARA5]:>§5§ Ed c/

Proof. We set B
E(t) == Er(t)Ex(t) = e
with the exponential martingale

er(t) = exp | v2p(8) TV - p(S)t]

and the stochastic process

Ly:= ft T4(u) du++/2p(S) Tgl) _

0
Observe that for any § > 0 we have

£ = exp[ 5v/20(8) TV + 5p(S ]—exp[5(1+25)p(5)t] V2 (1)

with the exponential martingale

E_267(1) —exp[ 20/2p(S T —452 S)]

In the same vein we have

EY(t) = exp [5v2p ) T — 8p(S ]—exp[5(25—1)p(5)t] Expr(®)

with the exponential martingale

Easx (t) 1= exp [25«/2,0 T —46%p(S)t ]

This yields the estimates

E (E*‘s (t))

exp (3(1 + 28)p(S)t) B[ €n(t) ™ €15 (1)]
< E[Ep(t)_%]l/ ® exp (501 + 26) p(S)1)
E(EW) < E [5p(t)25]1/ ® exp (5(26 — 1) p(S)1).
Using and we find the estimates
E (E*‘;(t))l/ "< exp ([(1420) p(S) + Az ] 1) (38)
E (E%t))” "< () exp ([(20 = 1) p(S) + Afi (e, 6)] £). (39)
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The estimate is valid for any € € [0,1] and any
d<eelrs and tr(Fp) <o(e).

Using the fact that

dE () < —eFr (FA(t) dt +/2p(8) d1iV - p(S)dt>+%e_Li 20(8) o TDY, dt

< €' (FA(t) dt + /2p(S) dﬂ”)

we find the stochastic inequality

A ') < &) dE + 5 dE ) — 287 (t) B4 p(S) dt
< €'n = [rA(t) +/2p(8) dTE”] +&7' ) [vt dt +/Vs dﬁ?)]

~E7 (1) &1 |Ta®) dt++/20(8) aTV| — 2871 (1) = p(S) dt
-1

A0 [(Vt — 25 p(S)) dt + V= drf)] .

For any ¢ > 2, this implies that

dE W) < SFTETW |V -25p(8) dt+ NV E a1

= -1
+o ETLEW@) T (‘52)14 dt
—5—1 &0 [ /6 +1 — =) (2
0= E (1) TVt—2:t p(S) ) dt++/Vy Z.d Y7 |.

Taking the expectation we obtain

OE [(Et ?’%t))‘s] < 5(5;1) IE[ (E E’l(t))(s_l NIt Vt]
— 25 p(S) E [(Et 8_1(t)>5} .

On the other hand using Lemma and the Laplace estimate we have

E <<Et E_l(t)>6_1 NIt vt>
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This yields
o 1/8
oE (=7 1))

' OE (e 1))

< —2p(S)E <(E£_1(t))6> v + (0 —; D % exp ([(1+46)p(S) + Ar]t)

from which we conclude that
__ 1/ 1/6
E ((Et 5 1(75))5) < exp{—2p(S)t} E (Eg) + % exp {((1 +40)p(S) + A7) t}
< % exp {((1+40)p(S) + A7) t}.

By Cauchy-Schwarz inequality we also have
_5aN\2/0 _ 1 N2\ R s s N1/5
E(:t/ ) —E (5(t)5/2 (:t 5 (t)) <]E((:t 5 (t))‘5) E (5 (t)) .
Using we conclude that for any € € [0,1] and any 0 < e € Ar g and tr(Fy) < o(e, 9),

E <Ef/2>2/6 < ¢5(P) % exp { (66p(S) + AF + A{f(€,6)) t}. (40)

On the other hand, by [14], Theorem 2.1] for any 6 > 1 we also have

B (2?1 2) " <Bfew (5 [ ra) +6-1pt) du)|fs}l/5

_ 1 6+1 (¢ —5 1/8
x{_s+N2 SE[VUU-'S] du}

(41)

with the rescaled process

Vi i= exp (Jt [T a(u) +2(1 —6)p(S)] du> Vi

S

of the process V; defined in Lemma [5.3]

On the other hand using for any € €]0,1] there exists some time horizon s = s(¢)
such that for any ¢ > s and any § < % v/ As we have the almost sure estimate
2/8 ~ S+1 [t 1 1/5
(Hé/Q | .7:) < Zs exp (— (1 —e) Mot — 5)) {_,5 + —5 E [Vﬁ | fs] du}
S

with some process Z; such that

2 1
supE (Z7) <0 for any aéex/)\< = ARS VA >

t=0 2
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Combining Cauchy-Schwarz inequality with and Lemma we readily check that

E [Vi | ]—“8]1/5

_E {v;j exp (5 J L0 a() + 2(1 — 6)p(S)] dv) | ]—"3]1/5

S

<e[v?]" ep 00 -0p©)w- o) E[Ew/ee) | 7]

u

< % exp [(2(1 = 6)p(S) + AF) (u—s)].

This yields the estimate
—5/2 5/2 0 3
E(:t | -7:3) < ZJ% exp —3 (I—€) Xoa (t—s)

{m S e (201 0p(s) + A7) (- 9]}

This implies that for any 1 < §/2 < i vAs we have

E(E;W | ]-"5) < ¢ 2% exp <—g (1—¢) Aoa (t—s))

X {52/2 + Ni/Q exp [g (2(1 = 8)p(S) + Ar) (t — s)] } .

Taking the expectation and choosing € < 1/2, there exists some time horizon ¢y such that
for any s > 0 and any 7 = s + tg

E (Ef/ 2)2/5

<c exp (fXaA (r— (s + to))/2) {1 + % exp [(2(1 = 8)p(S) + A7) (7 — (s + to)]}

for any 2 < § <1+ vN for some v > 0, and for some finite constant ¢(d) < co. This implies
that for any time horizon ¢t > 0 and any

2<0<2'/As A (1+vN)

we have
2/8 )
E (ngtwt) / s e <_)\2A t) {1 * % P [(2(1 ~Op(S) + Al:) t]} '

This yields the uniform estimates

2/5 2/ b\ 1
sup [E (Ei/Q) =supE (ngtwt) <c {exp [—>\3A t] + N &P [)\pt]}

u€[t+to,00[ 520
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with the parameters

4 4
S 1Yy (R B R |

On the other hand, by . ) for any time horizon ¢ > 0 and any 0 < e Ar,s and any Fp
s.t. tr(P) < o(1,eAp,s/2) we have the uniform estimates

2/6 1
su E (=9/2 < ¢c— e Lt
se[o, t(E)th] ( ) N < [Are]

with
)‘i“ = bedpa )\375/)\5 + A; + Alir(l,e)\gs/?).

We conclude that for any time horizon ¢ = 0

~

2/8 A 1
supE ( 6/2) <c { exp [—ZA t] + N &P [(Ar v )\f)t]} .

s=0

Choosing t = ¢(NN) such that

t=t(N):= logN/{XaA/2 + (Ar v /\f)} ;

we conclude that

~

2/8 A
supE ( 5/2> <cN™® with a=x oA €]0,1].
50 Aoa + 2 (/\p v /\f)

This ends the proof of the theorem. |

Corollary 5.5. Assume that (471\/Ag) A (27YeArs) = 2. In this situation, there exists
some Ny = 1 and some « €]0, 1] such that for any Ny < N and any initial covariance matriz
Py of the signal

tr(Py)” <

1 )\5[1+ 2

2 Ar ARAS]:T;EEUQ G ) < e(Po)/N*

for some finite constant c¢(Py) < o0 whose value depends on Py.

Proof. Using we have

&t — ¢ = [(aA(mt) —pS) & + pSXy + A(my) — 0A(my) mt] dt

- [(aA(f(t) — PS) ¢} + PSX, + A(X) — 0A(XY) f(t] dt + dM,

with the martingale
—1
dM; = (ps — P)B'Ry d(V, - V}).
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This yields

aeh - ¢)
= [(@A@m) = piS) (€ = 1) + (= P)S(X = ) + (0A(my) = 0A(R0) ¢} | dt

+ [(A(mt) - A()?t)) + (aA(f(t) - 6A(mt)> me + AR (Xe —me) ] dt + dM,

with
DT 0M(E), M(k)) < 20(S) || pe — Pil

1<k<r

This implies that
dl& — G117
< 2& — G d(& = 6)) +20(8) | pe — P dt
< {=Xoalé = G117 +20(9) | pe — Pol3 +20€ — G

< [Ipe = Pl 18X = GOl + (roa (IGH] + Imel) +210A1) [me— Xil|} dt + dM,
with the martingale o
dM; = 20& = ¢, dM).
Notice that

2p(9) | pt — Pi| %
+2)&f — ¢/ [Hpt —Plr |S(Xe = )|+ (80a (|G ]+ [mell) + 2[0A]) [me — fft“]

AoA
< N 1€ — G x e

with the process

e :=2p(S) | pe — Pil7
2 ~
+4 [Hpt = P|% 1S(Xe = ¢H* + (roa (IGH] + [mell) + 2[0A])7 [me — Xt||2] /oA

By Theorem [5.4] we have

supE(e;) < ¢(Py)/N®

=0
as soon as (4 1y/Ag) A (27ledrs) > 2 and initial covariance matrix Py of the signal is
chosen so that




This implies that

A
OB (I& — ¢l17) < =5~ E(I& — G!1%) + e(Po)/N™

The end of the proof of the corollary is now a direct consequence of Gronwall lemma. ]

6 Appendix

6.1 Regularity conditions

Notice that for any «a,x = 0 we have

x
1+1/x

> 2 — a:>a(1+ 1+2/a)

and by (20)
1 —1
Ars > (8¢) 7' Ar /s {1 + e} .

This shows that

(8e)1[1AR\//\TS]>a = AnVAs>dae (1+/1+1/206)) = Ans > a.
+
ArRVAs

Also observe that

As>4 and Ap >2ae <1+«/1+1/(2ae)) — Aps > a.

This yields the sufficient condition

(ArcAr) Ads >4 and Ar Vs > de (1+1/T+1/(2¢)) = .

Also observe that for any a > 1 we have

(Ax/a) A (Ag/4)>1 and Ap >2ace (1 +4/1+ 1/(2046))

= (AxAr/4) A (Ars/a) A (As/4) > 1.

We end this section with the proof of (21). Whenever p(S) = 1 condition takes the
form

1
Aoa >4 My >4 koa tr(R) and )\2;1/2 > 4%¢ [tr(R)2 +5 tr(R) )\%A}

The r.h.s. inequality can be restated as

()‘%A)Q (1 + i V%) > <tr(R) + %A)Q

30



which is equivalent to

tx(R) < (%‘) [(1 + 4% ﬁ)lm _ 1]

This ends the proof of the sufficient condition . ]

6.2 Proof of Lemma [5.1]
We have
“TA(®) = Aoa— (2koa tr(P) + p(8) 1X: = Kell ) < Aoa[1 = 2/(AscAp)]

The end of the proof of is now clear. Observe that

&) = exp [5 ﬂ [(QW tr(By) + p(S) | Xs — Xy ) - )\aA] ds}

< exp [(»M KK (tr(P0)+)\1> —1] t] exp [5 o(S) Lt X, — Xy ds].

R

We let ¢1(x) = X; be the stochastic flow of signal starting at Xo = x. We recall the
contraction inequality

[61(z) = ¢e(y)]| < exp (=Xoat/2) [z —y. (42)

A proof of can be found in [I4) Section 3.1]. This inequality implies that

t t
LXT—XA dr jo 60 (X0) — K| dr

t t
< jo 164(X0) — 6,(R0)] dr+f0 160 (R0) — Ko dr
t t
< <J e~ roar/2 dr> 1 X0 — Xo +f lér(Xo) — X, || dr
0 0
t
< 2| X0 — Rol/hoa + j 16,(Ro) — X, | dr.
0

This implies that
t N =R t ~ =R

exp |3 9() [[ 1~ Rl ] < xp 2810~ Rollns] exp [35) [ 0u(R0) — .l ]
0 0

Using the estimate = — 1/4 < 22, which is valid for any x, we have

fg ((6u(R0) — Rl — 1/4) + 1/4) du < t/4 + fo 6, (R0) — X, |2dr.

31



We find that

exp [30(5) jﬁ = Rl ds] < exp 20160 Ralas] e Gto5)/)

<o [00(8) || 1ou(Fo) = K2 |

0
This yields

E[exp {6 o(5) fo X, - R4 ds] |Xo] < exp (199()/4) exp [ 20X — Rol/As]

<& [exp [30t) [ ou(Ea) — £ ] ).

0
We also have the series of inequalities
1 1 N
p(S) 1 +7T(9A(O) 4t1‘(R)

_ 1 Vﬁ 1 1 AsAR 1
T p(S) 4 1+mea(0) 4tr(R) T 2 x 42 1/2 + tr(Po)2(p(S)/tr(R)) + p(S)tr(R)/A2,

1 R ) 2 -1
_ L eag (228 w(p 1
2 S R< N () +[ +>\R>\g]>

> C s n |14 2 B 142 2R p? 14 —2 RE
Z ge VIO OR Ar)s As 0 Ar)s

A 9 17\
—e )\ 1+2 22 (P2 |1 .
¢ ARS ( * As H(Fo) [ +)\R>\S} )

This shows that

5p(S) < € 2
PRO)S T704(0) 4602(R)

for some € € [0, 1] as soon as

1A 2
tr(P0)2 < 5 ﬁ [1 + )\R)\S} (g € AR5 — 1) for any 6 <e e Agrg.

The end of the proof of is a direct consequence of [I4, Theorem 3.2].
The last assertion resumes to [I14, Lemma 4.1]. This ends the proof of the lemma.

6.3 Proof of Lemma [5.2]
Using we have

dtr(ps) = (tr((0A[my] + 0A[m] )pe) — tr(Sp}) + tr(R)) dt + \/% dM,
< [—Xoa tr(p) — i p(S) tr(pe)? + tr(R)] dt + Nl— - M,
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with a martingale M; with an angle bracket

Ol My = 4tr((R + peSpe)pe) < 4tr(p) (p(R) + p(S) tr(pr)?).

Using [13, Lemma 4.1] we have

By we have
1

VN

dmy = [A[mi] — peSmy + pSXy] dt + p, B'Ry;M* Vi + dM,.

Since M, is independent of V; we have

d|me|? = (2 {my, [A[ma] — peSmy + peSX]) + tr(R + piSpy)) dt + dM,

with the martingale

~ B 1 -
dM, = 2 (my, py B'Ry Y2 dVy) + 2 Ty (mes dAT)

and the angle bracket
My = 4 e, (R + peSp)me)/N + 4 (my, (peSpoymey < Vi |mu?

with
Vi =4 [tr(R + piSpe) /N + tr(peSpe)]-

Observe that

(my, Almy]) = (my — 0, A[my] — A(0)) + (mu, A[O])
< =Aa [me]® + JAQO)] [me] < —(Xa/2) Imel® + [ A0)]?/(224).

This yields the estimate
dlmel® < (=a lmel® + [AQ©)2/Aa + 2[my] [peS] | Xe] + tr(R + peSpy)) dt + dM;
from which we find that

A
d|mg)* < (—; e +ut> dt ++/Vy dN;

with d;(N); <1 and
U = [A0)?/Xa + peSI? |1Xel?/Aa + te(R + peSpe).
Arguing as in the proof of Theorem we conclude that

Vi<3n<1+(N-1)/(2r) sup E (|lm¢[*") < o0.

=
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Using we have
d&f = [(0A[me] — peS) & + pSXe + A[my] — dA[my] my] dt + dM,

with the martingale
dM, := RV AW, + p,B'Ry*d(V; — V).

This implies that

dlgt? = [2¢&, [(0A[me] — piS) & + peSXe + Almy] — 0A [my] my])

+tr(R) + 2tr(p:Spy)] dt + dM,

< [-(aa/2) €17 + U] dt + dM,
with o .
dM; = 20}, dMy)y — o(MDy < Vi ||€] 2
and
U = 2pSXi+ Alme] — 0A[my] my|®/Aoa + tr(R) + 2tr(Sp}),
Ve = 4(tr(R) + 2tr(peSpy)) -

The end of the proof follows the same arguments as above, so it is skipped. This completes
the proof of the lemma. |

6.4 Proof of Lemma 5.3
By and we have
d(pt — Pt) = Ht dt + th and d(mt — Xt) = ﬁt dt + dﬂt

with the drift terms

M = (0A(mp — AR + (0A(map: - aA()?t)pt)'
+(P = pi)SP, + (P —pi)SP) — (Py — pe) S(Py — pt)

0, = (A(m)— AXy) = piS(my — Xp) + (pe — P)S(Xe — X))
and the martingales
AM; = ——— M,  dM, = (o — P) B'R; Y2 Vi + — dii,.
VN -1 VN
Using the decomposition

0A(my)pe — 0A(X) P, = 0A(my)(pe — P)) + (0A(my) — 0A(X,)) P,
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we check that
II; = [5A(mt) - %(pt + Pt)S] (pe — P) + (pe — P) [@A(mt) - %(pt + Pt)S]/
+(0A(me) — OA(Xy)) Py + P(0A(my) — 0A(X))'.
This implies that
e — Py < —Xaa |pe — PilF + 2604 tx(P) |pe — Pellp [me — )A(tH
from which we prove that

dlps — Pil|3 = 2{p— P,d(p; — P))

2
tN T [tr((R + ptSpe)pr) + tr(R + peSpe)tr(pe)] dt

N
< {—QAaA Ipe = Pil[7 + 4r0a tr(P) [pe = Pell [me — X4

2
+t 1 [tr((R 4 peSpe)pe) + tr(R + ptSpt)tr(pt)]} dt + dN;
with the martingale
2
dN; = — P, dM;)y =t — Py)dM,).
t VN -1 {pt t t) r((pt 2 )d M)

After some computations we find that

(Nt < N_1 Ipe — Pil7 tr(pe(R + peSpr)).

In much the same vein we have

(= X, Ty = (my = Xi, (Amg) = A(X0)) = peS(my — Xp) + (pr — P)S(Xe — X0))
A4 lme — Xol? + p(S) | Xe — Xe| |pe — Polr [me — X

A

This implies that
dlm; — X[ = 2 {(m = Xy), d(my — X))
(100800~ PO+ (i) )
< {22 = RulP +20(8) 1Xe = Kel e = Pele fome = il
(Sl Pl + 3 (R -+ i) | b + Ay
with the martingale

ANy = 2 {(my — Xy),dM) = 2 {(my — Xy), (p — P,) B'Ry " vy + \F<
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In addition we have
J— ~ 4 g
ANy < 4p(S) [me — Xi|?|pe — P% + N {(me — X4), (R + peSpe) (me — X4))

R 2 4 R
< 2p(95) (Hmt — Xo|? + |pe — PtH%) + Ime — X¢|* tr(R + peSpe).

Combining the above estimates we find that
Az < {220 Iy = K +2 Ipe = Plle e = Kil| (2604 te(P) + p() 1 — Kl ) | at

— (2Xoa — p(8)) |pe — Pl dt
[tr((R + peSpi)pe) + tr(R + prSpi)tr(pe)] } dt + dN; + dN.

1
TN {tr(R +peSpe) + N1

Recalling that
204 = Xoa >0 and 2Xp4 — p(S) = Naa,

this yields the estimate
{204 B+ 2 Ipi = Pille [me — el (2604 t0(P) + p(S) [ Xe = K] )} dt

=t <
1 _
tr(R + peSpe) tr(pe) + tr(R+ ptSpt)> dt + dNy + dN;.

L 4

N \N-1
On the other hand using the inequality 2ab < a? + b? we prove that
—{Aoa = (2504 () + p(8) X, = K] )} =4 at
r(pt)> [tr(R) + tr(S)tr(pt)Q] dt + dN; + dN;

d=Z; <
LI R
N 1-1/N

from which we conclude that
1
dEt < (FA(t) Et + N Ut> dt + th with Z/{t = (1 + 8tr(pt)) [tI‘(R) + p(S) tr(pt)Q]

and the martingale Ty := Tgl) + TEQ) given by
2 {(me— X4). (pr — P) B'Ry ' dVi)

N — 2
~ X)), dM) + —— (py — Py dM,).
(mt t) t> m<pt t t>

ar{) .=
2

Observe that

(r® x@y, = o
~ 2
Ty < 2p(8) (Ime— Kal® + Ipe = BI3) < 20(5)

~ 4 _
| = Ril? +2 I = Pl tr(po) | 0B+ poSp) < 5 U =

=2
=y

at<'r(2)>t N

This ends the proof of the lemma.

N
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